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The difference schemes for fluid dynamics type of equations based on third- and
fifth-order Compact Upwind Differencing (CUD) are considered. To validate their
properties following from a linear analysis, calculations were carried out using the
inviscid and viscous Burgers’ equation as well as the compressible Navier—Stokes
equationwritten in the conservative formfor curvilinear coordinates. Inthe latter case,
transonic cascade flow was chosen as a representative example. The performance of
the CUD methods was estimated by investigating mesh convergence of the solutions
and comparing with the results of second-order schemes. It is demonstrated that
the oscillation-free steep gradients solutions obtained without using smoothing tech-
nigues can provide considerable increase of accuracy even when exploiting coarse
meshes. (© 1998 Academic Press
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1. INTRODUCTION

In the seventies, the high-accuracy technique was proposed for fluid dynamics wt
was based on the third-order compact upwind differencing (CUD-3) idea [1]. In subsequ
years, it was extensively used for solving various compressible and incompressible vist
flows described by the Navier—Stokes equations and their simplified forms [2]. As its ext
sion, the fifth-order CUD (CUD-5) was described [3] and validated as a part of theo
method for incompressible flows [4].

Application of the CUD approach to viscous flows showed that high-accuracy oscillatic
free solutions can be obtained for many practical cases without using any artific
smoothing devices (limiters, additional dissipation, etc.) as far as steady state solut
are concerned.

Investigations into the CUD-3 schemes for unsteady inviscid computations were initia
in [5]. They have been continued in [6], resulting in high-resolution schemes for the Eu
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206 TOLSTYKH AND LIPAVSKII

equations. Applications of the CUD-3 to unsteady compressible Navier—Stokes equat
were reported also in [7].

In the early nineties, new versions of the third- and fifth-order compact upwind di
cretizations were proposed and investigated theoretically [8, 9]. They can be referred t
CUD-II-3 and CUD-II-5. The general CUD theory and applications up to 1993 can be fou
in [10]. Other types of upwind compact formulas with pentadiagonal matrix operators we
considered in [11, 12].

At present, it is clear how to construct formally arbitrary-order compact differencir
(in general, nonsymmetric) formulas which are some rational functions of conventiol
difference operators [10]. However, the important point here is to choose those which |
to stable schemes, at least in the case of constant coefficients and unbounded dor
(or periodic functions). However, even if theoretical studies are carried out and neces:
stability proofs are presented, the question arises to what extent the resulting sche
are competitive. The question is not trivial, since it follows only from the well-know
theorem hth-order discretization+ stability = nth-order convergence” that asymptotic
mesh convergence order can be at leasin fact, accuracy estimates depend also ot
constants characterizing the sensitivity of the numerical solutions of resulting differer
systems to input data perturbations. For example, high-order centered approximatior
the first derivatives can lead to ill-conditioned systems with little hope of obtaining accur:
solutions. Moreover, there are some factors in many real-life problems which have
potential for neutralizing the possible advantages of high-order schemes. They are,
example, nonsmooth meshes in curvilinear coordinates, low-order discretizations of visc
terms, and computational costs when solving resulting algebraic systems.

Although considerable knowledge was obtained while solving various CFD problel
with CUD-3 (and patrtially with CUD-5), comparatively recent approximations CUD-II-
and CUD-II-5 were investigated mainly theoretically. Theoretical analysis [8—10] indicat
that they can be especially beneficial when applied to steady-state problems. Howe
the quantitative estimates showing their real performance were lacking. The present
per concerns the first numerical investigation of methods which use these approximati
It is based on large-scale calculations and comparisons of the performance of low-o
schemes with emphasis on steady-state high Reynolds number solutions of the Na
Stokes equations. The study is aimed at estimating the accuracy and quality of the re
ing numerical solutions, as well as the corresponding computational costs. Another ¢
is the examination of the CUD behavior in combination with different “non-CUD” ele
ments (viscous terms discretizations, meshes, iteration or time stepping methods, alge
solvers).

In Sections 2 and 3, the theoretical background of CUD-II-3, CUD-II-5, and the resulti
schemes are briefly outlined for completeness (the relevant mathematics can be four
[8-10]).

Testing calculations using the inviscid and viscous Burgers equation are describe
Section 4. Their aims are estimates of the CUD “peak” performance which illustre
the main theoretical features of the technique (conservation, accuracy, behavior in
cases of discontinuous and steep gradient solutions), as well as comparisons
the second-order upwind scheme obtained by replacing the CUD with three-point o
sided differences. Although the emphasis is placed here on the mesh-convergenc
steady-state viscous solutions, an example of inviscid shock-capturing calculations is
presented.
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In Section 5, a family of implicit unfactored CUD-based schemes is outlined for tt
compressible Navier—Stokes equations written in curvilinear coordinates. In those schel
the CUD approximations are used in the flux-splitting manner while the implicit operatot
based on the first-order upwind differencing. For infinite values of time steps, the schel
reduce to defect-correction methods which are strictly contractive at least in 1D cons!
coefficient case.

Section 6 contains a detailed description of the calculations and the results. As a re
sentative example, transonic cascade flow was chosen. Numerical experiments were c:
out with refining meshes until the mesh-converged flow field was obtained. Using this fi
as a reference, the mesh-convergence rates, actual accuracy, and computational cc
the CUD-II-3, CUD-II-5, and the second-order scheme are estimated and compared.
flow field parameters are presented for different meshes, special attention being paid t
separate flow resolution near the trailing edge.

Finally, Section 7 summarizes the main findings of the paper and presents the discus

2. NONCENTERED THIRD- AND FIFTH-ORDER COMPACT UPWIND DIFFERENCING

Compact upwind differencing is thought of here as an implicit nonsymmetric discre
form of convective terms of fluid dynamics-type equations which satisfies two conditior

(i) The implicit part consists of tridiagonal operators (“compactness”).

(i) The “orientation” of the differencing can be changed in the same way as in the c:
of conventional one-sided differences. From the mathematical viewpoint it means that
differencing operator can change the sign of its self-adjoint part from positive to negat
or vise versa.

We will focus here on the latest versions of the CUD family [8, 9] which are investigats
in the present study. They can be considered as additive corrections to the general first-
upwind differencing operators, defined on the mesk: jh, h=const as

A(S) = 0.5(Ag — SA), Q)
where

Aofj = fjua—fja,
Agfj = fj+1—2fj + fj_l,

ands is the “switching” parameter.
The corrected differencing formulas can be obtained in the following way.
Considering the difference between the exact derivaiiye= 3/0x and the generic
operatorA(s), we may write the formal Taylor expansion series regardiregs a small
parameter:

sh h? sh? h*
Dy —h™tA(s) = 303 — ED;” + ﬂD;1 —~ 1—20D§ + O(h®)

sh

1 1 1
<| ~ 3hDe+ 1—2h2D§ - ﬁsthg) EDf +0(h). (2
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Here we suppose that# 0. The next step is to change the power series

1 1 1
1—- —z4+ 22— 7 3
3s + 12 60s (3)

by a suitable Paglapproximantz = h Dy being considered as a variable.
If the third-order accuracy for the LHS of (2) is sufficient, then expression (3) can |

changed by
1 -1
1 .
(+s2)

which isO(z?) Pad approximant for (3). All we need now is to discretizBy andh?D2 at
least with the first- and second-order formulas, respectively. Restricting our considera
to tridiagonal operators, we tak®, and A(s;) as the discretization df?D2? and hDy,
respectively, considering as another parameter. Now we have the third-order operator

L3=|A S | 1A _1A h 4
3—|: (S)+§( +§ (51)) 2:|/ 4)

Including more terms in the Padipproximants for the RHS of Eq. (2), the fifth-order
CUD operator which will be used also in the present study can be written as

Ls= |A® + 2RO 1+ —=A “al /n )
5= 2 12 2 2 5

where
1 S 1 St
= I _ A — - A
Q +< 155 4> 0+<6+158) 2
1 g 1 5
R=1 ——— A ——— A
+ <105 4) ot (6 105> 2
signs, = signs, s = 4/5.
Supposing thati is a sufficiently smooth function and using the Taylor expansion serie

the following expressions can be obtained when estimating the actions of the CUD-II-3 :
CUD-II-5 operators,

ls 1 3%u
Lsu; = Dyu +s(—— + —> S—| . (6)
! lxax, 12s = 182) x4, _,
1s 1 3%u
Lsu; = Dyu —sl —= [ 7
A VY (1443 * 90052) X8|, "

wherex, € [X; —h, Xj + h]. One can observe that the numerical coefficients in (6), (7) wit
proper choice o§; ands can be considerably smaller then those in conventional formule
of the same orders. It means that approximations (6), (Dxtocan be quite accurate.
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It can be proved also thét,,, m=3, 5, is a positive (negative) operatorsit> 0(s < 0)
and sgrs; = sgns[10]. In that case(Lmu, u)y > 0fors > 0, (Lhu,u)y < Ofors < O,
whereu # 0 and(u, v)y is the inner product defined as

(u,v)H=Zuivi, u,veH. (8)

In (8), H is supposed to be the Hilbert space of either periodic or finitely supported sce
or vector-valued grid functions and the summation is performed over the grid points.

Denoting the skew-symmetric and self-adjoint parts gfoy LY andL (9, it is easy to
show that

Lm(s) = Ly +sLY, ©)

whereL® = —(LD)* LO = (LO)* > 0, and the asterisk denotes conjugate operato
in the sense of the inner product.)y defined by (8).

Note that the generic operatex(s) possesses the same property singe= —Aq and

5=A,<0. That is why each., operator can be labelled by “upwind” differencing,
meaning that its sign can be chosen according to the local slopes of characteristic
hyperbolic equations or systems. Looking at (9) from another side, one can sayttsat
the centeredm + 1)th order differencing defined by Y plus themth-order dissipation
defined byL©. It is the main difference betwedry, and the corresponding well-known
centered compact differencing of ttra+1)th order which is dissipation-free (a rich variety
of centered compact operators is presented in [13]).

Considering as an upwinding parameter, we will refer to operators (4) and (5) as comp
upwind differencing of the second type, (CUD-II-3) and (CUD-II-5), to discern them fror
the previous versions of third- and fifth-order CUD described in [10].

To outline other properties of operatdrg andL s, we consider the scalar conservation
law

ou af(u
- =0 10
ot + X (10)
and semi-discretized CUD scheme
d
a—lt’+ L f(U) =0, (11)

where sgrs = sgn f’(u) at each grid point. Assuming frozen coefficients, scheme (11)
stable in thel ,-norm (more precisely, in the discrete analogué gfnorm) generated by
(., .)n due to the positivity oL ,,. For proper discretizations éii/dt in Eq. (11), scheme
(12) will be either conditionally or unconditionally stable.

In the case of the vector conservation law (10), positive approximatiof$/x and
stable scheme (11) can be constructed either by diagonalization of the Jacobiarf hatrix
or by flux splitting (see [10] for details). The latter approach is used in the present stud

Supposing thatf (u) =au, a=const> 0, one can estimate dispersion and dissipatio
properties of (11). Comparing the exact wave solution of (10)

U(X, t) — efik(xfat)
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with the corresponding exact solution of (11)

U(XJ , t) — efdteik(jhfa*t)’

wherea, is the numerical phase velocity white= d(k) characterizes dissipation, one can
obtain the functions, /a andd_(a) =dh/|a|, « =kh.

Consideringx as the Fourier variable and introducing the Fourier imdg@sandL(©
of LY andL® (which are imaginary and positive real functionsagfrespectively), one
can see that

a/a, = ImCP@)/a, d=sLO@).
The functionsa/a, andd are presented in [10] for various members of CUD family. Here
we note only the following features of CUD-II-3 and CUD-II-5:
() In the domain of physically relevant wave numbers supported by meshes (apprc
mately, for 0< o < 7 /2), one has

a/a,~1, d=~0,

at least for fifth-order schemes which means negligible phase errors and dissipation;

(ii) Forthe shortest waves admitted by meshef(< « < =), the phase errors become
apparent, but at the same time the dissipation increases dramatically. Ib faatefine
mth-order built-in filter of high frequency noise.

3. DIFFERENCE SCHEMES

Considering again the scalar conservation law, we note that if the upwinding param:
s does not change its sign then the grid functignf can be cast in the flux form

Lmfj =0dj112—0Qj—172, Mm=3,5

with the grid functiongj_1> (j =0, £1, &2, .. .), implicitly depending onf;. To preserve
this property in the case of sonic points, it is possible either to modify the generic opere
A(S) [10], orto use the splitting technique. We will focus here on the latter approach, sett

of f(u)+Cu _fu—-Cu
— =L" L
X m 2 thm 2

+0(h™), m=3,5, (12)

where the operatois’, andL , correspond td., with s > 0 ands < 0, respectivelyC is
some positive constant, and the indess omitted.

To guarantee the positivity of this differencing operatbiu) + C and f'(u) — C do
not need to be necessary positive and negative, respectively. Indeed, it is easy to verify
approximation (12) taf/dx is positive (in the “frozen coefficients” sense) for arbitrary
C>0.

Combining this approximation with any reasonable time-stepping device one ¢
obtain a rich variety of CUD-II-m schemes for Eq. (10). For example, the simplest expli
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scheme reads

Ukl — gk

T

where the mestty =kr, X; = jh} is supposed; my f stands for the approximationad /ax
given by (12). To obtain+?, two and four tridiagonal matrices should be inverted whe
computing the actions of the operatarg andL sy, respectively. To do so, some numerical
boundary conditions are needed at the boundary points. They can be obtained in se
ways by using, for example, one-sided compact or conventional differencing formul
However, care should be taken to preserve the stability of the schemes.

Another example is the Runge—Kutta explicit procedure which was used in the unste
calculations for the inviscid Burgers equation described below.

In the present paper we, however, will focus on the implicit scheme

k41 uk

u
[ —i—rLlf’(uk)]i—i-mefk:O. (14)

In Eq. (14),L, is the first-order operator which can be obtained from Eq. (12) by usir
A(|s]) andA(—|s]), instead oL} andL -, respectively. The truncation error of scheme (14
is O(r + h™) which is suitable for steady-state computations with the possible detection
unsteady behavior of solutions.

The tridiagonal operatdr+ L1 f'(uX) should be inverted to obtairf™*, once the action
Lmyx fKis calculated.

It was proved in [9] that scheme (14) is unconditionally stable in the case of “froze
coefficients( f'(uU¥) =a = cons). Moreover, the operatds : u* — u**! obtained from
(14) whent =00 is strictly contractive; that is||G|| < K < 1. It was shown [10] that
K(s, s1) = 3/(3+ 2s,/9) in the case of CUD-II-3, which means rapid convergence of th
iterative process (14) with 3. It is the main advantage of the; operator overs and
other CUD operators. For the best choices of the upwinding parameters, their contract
numbersK < 1 are very close to unity [10].

Schemes (13), (14) can be easily extended to the cases of the vector conservation
with viscous terms. Supposing thatnd f in Eq. (10) arep-vectors, the positivity of the
discretization ofdf /ax will be guaranteed if the constaft is changed by any constant
symmetric matrix with positive eigenvalues. Moreover, the t&mcan be changed by
some vector-valued functioB(u) for which the Jacobian matri®’'(u) > 0 has positive
eigenvalues. In particular, the well-known forms of the flux splitting are possible wh
doing so. We emphasize, however, that from the stability viewpoint there is no need for
positivity and the negativity of thig(u) + B’(u) andf’(u) — B’(u) eigenvalues, respectively.

Supposing, further, that viscous terms are included in Eg. (10), one can discretize tt
terms in many ways quite independentlyddf/dx. For example, the terrdy/dx(udu/9x)
can be discretized as

SR b, (15)
wheredy andé} are some differencing operators and their adjoint operators, respective
Setting x = A(S) "A(9), 8 = — A(—s)"1A(—s), where A(s) is the tridiagonal CUD-3
operator [10], one obtains third-order approximation to (15) based on CUD-3. It was u:
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previously as a part of the CUD-3 scheme for compressible Navier—Stokes equations [
was found, however, that in many cases conventional second-order discretization doe:
notably decrease the accuracy of the CUD-3 scheme as far as high Reynolds number
are concerned and the proper condensing of grid points in viscous layers is performed

We note, finally, that to construct the CUD schemes in the case of several spatial c
dinates (say, y, andz), it is sufficient to use CUD operators corresponding to each spa
directions (x, Ly, andL,, respectively). By doing so, one can guarantee the positivity
spatial discretizations (in the “frozen coefficients” sense). Multidimensional upwinding
also possible but this topic is beyond the scope of the present paper.

4. NUMERICAL EXPERIMENTS WITH BURGERS EQUATION

To investigate the property of CUD-II-3 and CUD-II-5 approximations numerically, w
consider first the Burgers equation,

au 9 /u? 3%u
T ) =y u, X), 16
8t+8x<2) Voxe TIUX) (16)

whereg(u, x) is a forcing term.
Settingy =0, one can verify the conservation of the above-described differencing wh
computing unsteady discontinuous solutions.

Unsteady inviscid case.Although CUD approximations were designed primarily as
methods for the Navier—Stokes equations, CUD calculations for inviscid cases are us
illustrations of their properties. The shock-capturing capabilities of some CUD-3 schen
were studied in [5, 6]. The results for fifth-order CUD are presented in [10]. Avoiding tt
reproduction of these data here, we summarize the main conclusions:

(i) In accordance with the Godunov’s theorem, CUD-based schemes are not monot
in the unsteady inviscid case. However, due to their upwind nature, spurious oscillati
are well-localized near shocks.

(i) Application of flux limiters removes the wiggles completely, limiters being activate
only near shocks.

The above observation suggests the possibility of using CUD as a part of high resolu
schemes.

In this paper, we present an example allowing us to compare quantitatively the numer
solutions obtained in [14] and the CUD-II-5 results. The problem is given by Eq. (16) wi
v =0,9g(u, x,t)=0,

u(x,0) =14 0.5sin(zx), xe[—-1,1],

and periodic boundary conditions. For this problem, the tabulated errors for several va
of t and mesh sizes are presented in [14].

Table 1 shows the estimates of accuracy in(obtained by comparing with the exact
solution) extracted from [14] and calculated using CUD-II-5 with the fourth-order Runge
Kutta method. The values listed in the Table 1 correspone=6.3 when the exact solution
is smooth. They are obtained for the numbers of grid paints 80, 160, 320, 640, and
1280. No limiters were used in the CUD case.
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TABLE 1

n L, err,[14] L, order, [14] L, err, CUD-II-5 L, order, CUD-II-5

80 7.0102D-07
160 4.6548D-06 3.6185D-08 4.27
320 7.7529D-07 2.59 2.0451D-09 4.14
640 1.2524D-07 2.63 1.2145D-10 4.08
1280 1.8075D-08 2.83 7.6772D-12 3.98

As can be seen from the Table 1, the CUD results are up to two to three orders
magnitude more accurate than those obtained using the third-order TVB scheme [14]
the same mesh sizes.

The estimated mesh-convergence orders in our case vary from 3.98 to 4.27, thus, inc
ing rather fast convergence. A fifth-order convergence is not seen here due to the domin
of O(z%) errors of the Runge—Kutta method ov@rh®) errors of the CUD.

Figure 1 shows the CUD-II-5 and the exact solutioris-atl.1 when the shock is already
formed. In these calculations, flux limiter [15] was used to remove several wiggles near
shock.

It should be noted that the behavior of solutions near discontinuities depends strongl:
the type and parameters of the limiters used in calculations. No attempt has been ma
the present study to optimize the monotonization process.

Steady-state solutions of modified Burgers equatidnthe steady-state case, Godunov'’s
theorem is no longer applicable and nonmonotone schemes can provide wiggle-

u 1.5 1
Exact
3 x x x x CUD-—II-5
1.3
1.1 4
i
0.9 4
] '
0.7 ]
0.5 e . ——
~1.0 -0.5 0.0 0.5 1.0 “

FIG. 1. Solution of the inviscid Burgers equationfat= 1.1 CUD-II-5 with the fifth-order Runge—Kutta time
stepping.
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discontinuous solutions. Indeed, examples may be easily produced, showing that star

shock grid functions without any oscillations can be exact solutions of difference equatic
Inthe viscous case, the monotonicity properties of the steady-state numerical solutior

(16) depend on the cell Reynolds numbetg Reu..h/v, whereu, is some reference value

of u. To estimate the influence of Ret is worth performing the simplest linear analysis.
Consider the equation

au ou 92u

gu jou o 17
at " Yax T axz (27)

with du/dt = 0,a=const, andi(0) = 1,u(1) = 0. The exact solutions of algebraic systems
resulting from any discretization are known to have the general égrea >, ckQp , Where

Ok is thekth root of the characteristic polynomial. Supposing that the spurious compone
i, k> 2, are removed by a suitable choice of some additional boundary conditions
u;j and taking into account the boundary conditions in (17), one can easily obtain

uj = - q’, j=12...,N, (18)

whereq =q(Re&) and Rg = ah/v.
All difference schemes possess the following property: if R®e.,, where Re, =
0O(1) is some critical value then (18) mimics the exact solution of problem (17) give

by

U(X) = expa/v)

T expa/v)—1  exp@/v) — 1 XP@x/y).

If Re. — oo then the behavior of numerical solutions for different schemes can be co
pletely different depending on the valuesqiRe;). In the case of centered schemes one
usually hagq| — 1 when Rg— oo. It means that solution (18) can be completely erro-
neous due to ill-conditioned nature of difference equations. If, howgyeis sufficiently
large for Rg, < Re < oo, one may hope that at least the “inviscid” part of the solution i
reproduced with reasonable accuracy due to rapid decay of possible wiggles. For exan
in the case of CUD-II-3 and==s; =1 one has

4+ 5Re+[(4+ERe)’ + 2Ra(Re — §)]
_ e

If Rec < g =Re, thenq is positive andu; is oscillation-free. If Rg> g thenq is neg-
ative,|q| being large tending to 2 when Re> co. Hence, the oscillations generated by the
second term in the RHS of (18) have only marginal nature, decaying with increjasing

The comparison of the steady-state results obtained when using conventional sec
order and several CUD options are reported in [10, 16]df@r, X) =0. They show that
the CUD-based methods can be up to several orders of magnitude more accurate thar
ventional ones. However, in these calculations, the inviscid and viscous terms are bala
mainly in the shock transition regions, the “inviscid” portion of the solution being near
constant.

To add some complexity to the solution outside the shock, we consider the Burg
equation with a source term for which the exact solution is available.
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The problem is formulated as

du aur u v o, )
1-2
v(X) = tanh(—x> (29)
4y

u(o,t) = tanh<1), ud,t) = —etanh(1>.
4y Y

The exact steady-state solution of (19) is
Ue(X) = €*v(X).

If the viscosity coefficient is small, two “inviscid” parts of the solution with the exponential
behavior are separated by the shock transition region centered @15, its width being
O(v). Since the “jump” of the solutiodu and the maximum value of the derivatiu&x)
are approximately 3 and W/2respectively, we define the characteristic scale of the shock
du/u’(x) =~ 6v. Hence, the number of grid pointy, inside the shock in the case of uniform
grids can be estimated &5 = 6vN = 6v/h whenN is the total number of grid points. The
parametel, is, in fact, inversely proportional to the characteristic cell Reynolds numb:
Re; defined here bu.h/v, whereu,, = 1. The values ofN, are given now byN, = 6/Re..
Either N, or Re. are useful parameters when presenting the numerical solutions, since
the one hand, they indicate subcritical (Re Re.,) or supercritical (Re> Re.,) regimes,
followed from the linear analysis similar to that presented in Section 2 and, on the ot
hand, they show directly the mesh stzéor v = const

Calculations were carried out using uniform meshes with double the number of g
points. The implicit time stepping defined by Eq. (14) was used. The processes were
minated wherL,-norms of the residuals became as small ast40rhe admissible CFL
numbers were found to be up to 1000, thus indicating that the scheme is practically une
ditionally stable in the present nonlinear case.

Along with the CUD-II-3 and CUD-II-5 approximations to the inviscid term, the seconc
order one-sided three-point formulas were tried, thus presenting the conventional upv
scheme. We denote it by UD-2. Two options were used when discretizing the viscous te
namely, the conventional second-order approximation of the type (15) and the fourth-ot
compact approximation

2 -1
u% - %(I +%> Aou + O(h?). (20)
In the case of UD-2, the above options gave approximately the same results so the “p
second-order upwind scheme was adopted as UD-2.

The main output of the calculations presented here are the numerical solution error
functions ofN,, where the erroE; is defined on the basis of the deviations from the exac
solutionu, of Eq. (19):

N 1/2
E.= [h > Wi - ue(xo)zl .

i=1
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FIG. 2. L,-errors of the steady-state solutions of the modified Burgers equation vs the number of grid in
shock region: comparisons of CUD-II-5, CUD-II-3, and UD-2 convergence curves.

Figure 2 shows the log—log plot &,(N,) for CUD-II-5, CUD-II-3 with fourth-order
discretization (20), and UD-2. Depending on the valuedNgf the numerical solutions
of Fig. 2 can be classified into those which resolve or underresolve the shock. Tak
into account the above linear analysis, we define the underresolved case by the ineqt
Re. > Re.. =2 which givesN, < 3.

As can be seen from the figure, tBg-errors for the CUD-based schemes are not onl
decaying more rapidly than those for UD-2 in the well-resolved region(which is qui
expected), but they also show the dramatic increase of accuracy measured by the orde
magnitude. Comparing the CUD-II-5 and CUD-II-3 solutions, one can see that the thi
order results are less accurate but they are considerably more accurate than those ob
with UD-2.

Considering now the underresolved case when only one to three points can be fo
in the shock transition region, all considered methods give approximately the same va
for the Ex-errors. However, the CUD-II-5 error is slightly less than that for other teste
methods. It is not a trivial fact, since large high-order derivatives in truncation errors c
completely neutralize the powers of mesh sizes in the case of coarse meshes.

A close examination of the underresolved case when only one grid point can be fol
strictly inside the shockN = 25, Re; =4) has shown that all methods give the solution:s
which slightly oscillate near the exact solutiag(x). This fact fits neatly into the above
theoretical estimates. However, tBg errors in this case are not excessively large, thu
indicating relatively small amplitudes of these spurious oscillations.

To restore the noticeable advantage of CUD-based schemes, it is sufficient to cond
grid points in the shock region. Figure 3 shows the comparison of the exact solution (s
line) and CUD-II-5 (markers) in the case Nf= 10 and clustering which guarantees abou
three grid points in the shock.
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FIG. 3. The exact and CUD-II-5 steady-state solutions of the modified Burgers equatierni0, with
clustering of grid points in the shock region.

Returning to the well-resolved case, one can see that the slopes of the CUD curve:
not strictly constant, showing a slight variation of the convergence rates. It can be explai
by the “blended” nature of the truncation errofd) which have the form

TEX) =TE], +vTE],, TER =ci(00h™, TE[ = ca(x)h",
wherem= 3, 5 andn =4 while the functiong;; (x), i =1, 2, are defined by the exact so-
lution. In contrast to the inviscid and viscous terms of the equalfid,, andTE], do
not balance each other and their relative roles depend strongly oty téed c, func-
tions. As a result, one may expauth- or nth-order convergence i Ej,, >> vTE,;s or
TEinv << vT Eyis, respectively.

To investigate further the role of the viscous term discretization, additional calculatic
were carried out using the conventional second-order three-point approximaifary éx?
and the sixth-order compact differencing,

2 1, 2 11 4 17 4 1 5
1_5Uj_1+ Euj + 1—5Uj+1 e %Uj—z-i- guj—l_ —Uj+ guj+1+ Z)qu +0(h?),
where the primes denote derivatives. The convergence curves of CUD-II-5 with(tiig
formulas for the viscous ternm,= 2, 4, 6, are shown in Fig. 4 with the UD-2 results from
Fig. 2.

The following conclusions may be drawn from Figs. 2 and 4:

(i) the CUD-based schemes are considerably more accurate than UD-2, even thou
low-order operator is used for the viscous term;
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FIG. 4. Comparisons of mesh convergence for different discretization of the viscous terms CUD-II-5 wi
second- (V2), fourth- (V4), and sixth-order (V6) discretization of viscous terms.

(ii) the combinationm=5,n= 6 provides the mostrapid convergence and the leasterrc
for large N,. However, the CUD-II-5 curves correspondingnte- 4 andn = 6 have inter-
sections in some domain &f, due to the combined effect of the “viscous” and “inviscid”
truncation errors.

Again, the explanation follows from the relative rolesid;,, andT E},.. Table 2 shows
the numerical values of their, norms calculated using the exact solution fbe= 1600.

DuetoTE], << vTEL,, TED, >>vTES,, andTES, >> vTEL, the convergence near
0O(h%), O(h*), or O(h®) can be expected for the different combinationsnodndn.

SincevT EZ, dominates oveT EM,, m= 3, 5, both CUD schemes are expected to be o
second order as in the case of UD-2. HoweVd?,, >> vTE2_ and large “inviscid” errors
make the actual accuracy of UD-2 considerably poorer (about an order of magnitude) t
the accuracy of its CUD counterparts.

The estimates of the, convergence orders calculated for different combinations of
andn (denoted bym — n) and largeN, are presented in Table 3.

As can be seen, the actual order of the- n combination lays betweem andn or

nearn.

TABLE 2

TEL  TEL  VTEL, WTE, TE

TE?

inv

9.05D-08 1.2D-04 1.25D-02 1.46D-09 1.05D-06 1.95D-03
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TABLE 3

L,-order 5.15 3.84 2.47 3.11 1.96

Based on the above observations, one may arrive at the conclusion that the CUD techr
can be advantageous even when combined with simple viscous term discretizations it
cases of high Reynolds number flows. In these cases, the domina@¢@®f, m = 3, 5,
truncation errors in inviscid portions of the flow due to the'Reactor and the absence of
the dominant errors of the convective term discretizations in viscous regions may incre
solution accuracy. This suggestion will be illustrated in the next section.

We conclude this section with the following remarks:

1. The exactsolution Eq. (19) is characterized by a rather strong shock inside the invi
flow. To estimate roughly the accuracy in the “smooth” cases, one can cohkides/Re.
as a number of grid points per characteristic length. For example, if there is no shock in
computational domain & x < 1 thenN, = N and the efficient Re=6/N.

2. The local errors in the shock region influence greatlyEherror. Clearly, the local
errors in the “inviscid” parts of the solutions are considerably less Eydior fixed values
of Re..

5. APPLICATION TO COMPRESSIBLE NAVIER-STOKES EQUATIONS

We consider the Navier—Stokes equations written in conservative form in general cu
linear coordinates, n, ¢ as
af(u dE(u aF(u aG(u
(u) n (u) n (u) n (u) _
ot 0€ an ac

V(u), (21)

whereu = (p, u, v, w, €)T with Cartesian components of the velocityv, w, densityp,
and internal energy. The vector&, F, G, andV representing the flux functions and viscous
terms, respectively, can be found in the CFD literature.

Introducing uniform mesh =i A&, nj = jAn, and g =kA¢, the CUD-II-m diff-
erencing described in Section 2 can be applied-toy-, and¢-derivatives, resulting in
the grid functiond_:E, Lm,F, andLm,G. Considering, for example, tiedirection, one
can write

dE(w) . (E+Cfu) _ (E—=Cf(u) _
(S5 () weas

whereC is some positive symmetric matrix arhdﬁé are thelL ; operators corresponding
to the parameters|s|. The simplest choice df is the diagonal matrix

C=cx | (23)

max’ >

wherexé .. = max A (E'(u))| andA (E'(u)) stand for the eigenvalues Bf(u). The constant
c in Eq. (23) is of an order of unity and can be specified to a certain extent arbitrari
Theoretically, the reasonable choices®andc are not expected to influence noticeably
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the numerical solutions in “smooth” regions, since the t&ftu) in Eq. (22) corresponds
to themth order dissipative mechanism acting only on short-wave harmonics. Of cour
other forms ofCf(u) (or B(u)) are possible.

Considering viscous term discretizations, numerical examples presented in the prev
section show the beneficial role of high-order techniques. Having in mind this strategy,
nevertheless choose as the first attempt more simple conventional second-order differer
of the type

i B_CD _[. (CD' _q).)_ . (CD'—CD' )]
8§M8§ ijk_ Mit+1/2(Pit1 i Mi—-1/2(Pi i—1)]jk

Mit12 = (iz1 + w©i)/2

for any grid functior and®. In this way, it is possible to see how CUD operators perforn
with low-order approximations of viscous terms in the case of high Reynolds number floy

Due to the conservative property bf, andL;, the difference analogues of the spatial
derivatives in (21) can be considered as the balance of fluxes across the faces of the
putational cells centered at eadh j(, k) grid point. However, no special measures were
undertaken to preserve the geometrical conservation laws. It was expected that viole
of these laws in the case of high-order schemes would lead only to high-order influe
on numerical results, at least in the case of smooth solutions. To verify this assumpt
CUD-II-3 was applied to the chain rule conservation laws. It was found that no considera
difference between numerical solutions can be observed in the cases of transonic cas
flows when using highly skewed curvilinear coordinates.

In all cases, denoting the CUD discretization of the spatial derivatives in Eq. (2yby
the semi-discretized form of Eq. (21) can be cast in the form

8—U+M’1Nu=0, (24)

at

whereM is the Jacobian matriX (u). Starting from Eq. (24), the final scheme can be writter
as

k+l _ K
(I +toN)—— + M7INUK =0, (25)
T

wherek denotes time level = kz with time stepr (in generalk andr can be considered
as iteration numbers and iteration parameters, respectively) while valid&sando =1
correspond to explicit and implicit schemes. In Eq. (28)]s the first-order discretization
of spatial derivatives of the linearized Navier—Stokes equations obtained when using
upwind operatord\ (s) defined in Section 2 and corresponding{a;, and¢ coordinates.
The stencil in the implicit operatdr+ ro N; contains only three grid points in each spatial
direction, thus admitting relatively simple iterative inversions.

We note that by setting = oo, o =1, scheme (25) can be transformed easily into :
defect correction procedure with solving two or four nonlinear problems based on fir
order operators to guarantee third- or fifth-order accurate results.

To invert the implicit operator in Eq. (25), any iterative solver for large sparse matrice
can be used. The numerical experiments were carried out using GMRES method
with ILU preconditioner and Gauss—Zeidel technique. Of course, only a limited numk
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of iterations were performed during each time step (or external iteration), the iterat
parametet being dependent on the grid points.

When constructing scheme (25), other operators (in particular, other members of the C
family) can be used to descretize the spatial derivatives in Eq. (21). It makes comparis
of schemes based on different approximations being particularly simple.

6. NUMERICAL EXAMPLE: 2D FLOWS

To illustrate the performance of scheme (25) with the CUD approximations in the cz
of nonorthogonal curvilinear coordinates, the transonic cascade flow described by
Navier—Stokes equations was chosen as a target problem. This problem is interesting
to various types of boundary conditions, high curvature leading and trailing edges,
nonuniform skewed meshes. In the present study, the 2D case is considered only. It al
us to carry out large-scale calculations aimed at investigating the computational efficienc
the schemes and its dependence on various scheme parameters and details (grids, bot
conditions, etc.)

The computational domain typical of turbomachinery problems with periodic, solid wa
inflow, and outflow boundaries was considered. At the inflow, the total pressure, the
tal temperature, and the inflow angle were specified while the static pressure and
extrapolation conditions were used at the outflow. At the solid walls the no-slip conditi
and prescribed temperature were assumed.

The geometry of the blade and the H-type grid obtained by a parabolic grid generatc
displayed in Fig. 5. To investigate the convergence of the steady-state solutions with refir
meshes, 3& 20, 59x 39,and 11% 77 grids were used. The time stepping procedure (mot
precisely, the external iterative procedure) was performed with the paramatgq. (25)
considered as a variable grid function. The calculations were carried out for the transc
regime with the outlet static pressure to inlet total pressure ratio equal to 0.5. The Reyn
number Re varied from #Go 1.6 x 10°.

FIG.5. H-type mesh used in cascade flow calculation.



222 TOLSTYKH AND LIPAVSKII

Several boundary conditions for the wall pressure were tested, including the zero p
sure gradient condition and the continuity equation at the wall. It was found that th
provide practically the same flow fields everywhere but in the vicinity of the leading a
trailing edges, where several percentage differences in the wall pressure distributions \
observed. As a final option, the zero pressure gradient condition was adopted.

When advancing to the steady-state solutions, no attempts were made to optimize
time stepping processes. However, several options were tried, including the simplest ex
schemedq = 0) and implicit schemes( = 1) with the GMRES or Gauss—Zeidel iterations. It
was found that, despite the fact that the GMRES option converges more rapidly, the Gal
Zeidel technique is slightly preferable in the present particular exercises due to redu
operation counts per iteration.

As examples, several convergence histories are shown in Fig. 6, Whererms of the
residuals are presented as functions of the time step (the external iterations) number. It
found that very small residuals (up to18) can be obtained with great ease when usin
CUD-I1I-3. In accordance with the theoretical estimates [10], the slower convergence of
CUD-II-5 solutions may be seen from Fig. 6. For comparison, the curve for the explicit CU
[I-3 scheme (25) is also depicted in Fig. 6. It should be noted that, due to reasonable oper:
counts, all calculations of the present study were carried out on personal computers ol

Having in mind the advantages of the CUD-II-3 scheme when performing time-stepp
and higher accuracy of CUD-II-5 steady-state solutions, the following approach may
suggested.

At the initial stage of computations, the CUD-II-3 block should be used to provide raf
convergence. This block should be replaced (by switching or gradually) with the CUD-

13
E ]
2 ]
10 7'
] CUD—I1-3 explicit
w === CUD—II-3 implicit
----------- CUD—-II=5 implicit
10 74
1074 p
10 ~*3
10

Number of iterations

FIG. 6. Convergence to the steady-state solutionnorms of the residuals vs the number of iterations.
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one at the final stages of calculations, thus increasing the accuracy of steady-state solu
Of course, many other elements may be added on the way to optimal algorithms, on
them being the multigrid strategy.

The main emphasis in the present study was placed on the convergence of statio
solutions obtained when applying the CUD technique to the hyperbolic part of the Navi
Stokes equations and preserving the conventional second-order discretization of the vis
terms. For comparison, the first- and second-order upwind differencing were also use
the framework of scheme (25). In both cadeg,operators were changed, eitherdys) or
by three-point one-sided formulas, to produce upwind schemes which we denote by U
and UD-2, respectively.

The calculations were carried out starting with very coarse meshZDand then in-
creasing the number of grid points by properly placing a new grid point between two
neighbor grid points. It was found that mesh 2477 is sufficient to consider the CUD-1I-5
solution as mesh-independent.

The general view of the flow field pattern is shown in Fig. 7, where the Mach numk
contours are presented.

The surface pressure distributions corresponding to the resolutior IT7are shown
in Fig. 8a for CUD-II-5, CUD-II-3, UD-2, and UD-1. As can be seen from the figure, th
second-order results are sufficiently close to the mesh-converged curve while the first-o
method performs badly.

The same distributions are shown in Figs. 8b and 8c for coarser mesheg9%8nd
30x 20. Note that the latter is too coarse to be used in standard cascade flow calculati
One may see that the CUD-II-5 curves for thex699 mesh only slightly deviated from the
mesh-converged one. Surprisingly, the corresponding deviations in the case ofk#930
mesh are also small enough to be well inside the typical scatter of experimental points
the cascade flows. This fact suggests very cheap Navier—Stokes calculations for engine
estimates.

@ .APBE+08
1.844E-81
2.989E-81
3.133E-81
4,178E-81
5.222E-81
6.267E-01
7.31L1E-81
8.355E-81
9.480E-81
1.B44E+BD
1.149E+88

FIG. 7. Mach number contours.
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FIG. 8. Normalized surface pressure distributions. Meshesx117, 59x 39, 30x 20.

Considering UD-2 pressures, the differences between mesh-converged and coarser
data are quite pronounced (especially in the case of the resolutier2@R The CUD-II-3
results are intermediate between those for CUD-II-5 and UD-2. However, mesi3%9
seems to be quite acceptable for CUD-II-3 calculations.

The convergence of flow variables in the physical plane is illustrated in Figs. 9-!
As a representative characteristic, the Mach number distributions alongdberdinates
for x=0.3 andx =0.9 (the x-axis is collinear with the inflow direction, the origin be-
ing placed at the leading edge) are presented for CUD-1I-3 and CUD-II-5 calculatiol
The markers show the grid points of the 320 mesh. Again, CUD-II-5 results exhibit
good convergence, thus indicating that the coarsest mesh can be considered as a
able for engineering estimates. Another observation is that no more than three to four
points are needed in this case for accurate prediction of the tangential velocity near
surface.

As might be expected, the CUD-1I-3 curves demonstrate slower convergence. Never
less, the 53« 39 mesh seems to be quite reasonable for the scheme. For comparison
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FIG. 9. Mach number distributions along= const for different meshes CUD-II-5.

UD-2 curve for a 30x 20 mesh is also depicted in Fig. 11. It shows that the second-orc
scheme performs noticeably poorer than its CUD counterparts.

To estimate quantitatively the real orders of mesh convergence under the condition
curvilinear coordinates and second-order discretizations of viscous terms, the deviat
from the “exact” numerical solutions given by mesh-converged CUD-II-5 results we
considered. They were defined as

) ) ) ) 1/2
[Zi (Pi(” _pi<3))2+ (ui(” _ ui<3>)2+ (Ui(n _ vi(3>)2+ (qm _ Q<3))2}

err; =

=

()" + () + (%) + (&)

12 )

where the values of =1, 2, 3 correspond to meshes 3®0, 59x 39, 117x 77, and
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FIG. 10. Mach number distributions along= const for different meshes CUD-II-3.



226 TOLSTYKH AND LIPAVSKII

0.6 1.2 4

© o ©
(%] S W
.

=
o

Local Mach Number
Is3
e

011 117 x 77 02 ] 17 x 77

— ! 0.01 : . : T
0.8 10 0.0 02 04 0 a8 1.0
Y Coordinate

0.0 T
0.0 0.2

0.4 N
Y Coordinate

FIG. 11. Mach number distributions along= const for different meshes UD-2.

summation is performed over the grid points common to all meshes (that is, owxe2@30
mesh grid points). Based on these deviations, the convergence orders were calculatec
err;

errj_1’

order, = log,

The deviations and the orders estimated in such a way are shown in Table 4.

As can be seen, the real convergence order for all considered schemes is approxim
one-half that for their inviscid term discretizations. One can observe also that the CUD-|
error for the 59 39 grid is about one-half the UD-2 error for the 1277 mesh.

To estimate the dissipation introduced by the schemes in the inviscid portion of the fl
it is convenient to calculate the pressure losses defined as

1 — py/ Po.

where pg is the total pressure at the inflow ampg is the total pressure computed on the
basis of local flow variables using the adiabatic formula.

The pressure losses in the same cross sectiocad).3 andx =0.9, are presented in
Figs. 12 and 13 for CUD-II-5 and CUD-II-3, respectively. As can be seen, they are negligil
outside the boundary layers, whens39 and 117% 77 meshes are used for the CUD-II-5

TABLE 4
UD-2 CUD-II-3 CUD-II-5
Mesh Err Order Err Order Err Order
30x 20 0.0762 0.0714 0.0316
59x 39 0.0372 1.03 0.0257 1.47 0.00849 2.31

117x 77 0.0159 1.23 0.00789 1.70 0
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FIG. 12. Pressure losses in cross sectigns const for different meshes CUD-II-5.

calculations. The values 0.01-0.02 seen in Fig. 12 for the 3D mesh correspond to slight
Mach number deviations from the mesh-independent values (see Fig. 9).

The pressure losses calculated for UD-2 solutions (Fig. 14) show that the spurious
sipation introduced by the scheme is not negligible, even if the finest mesh is used.
coarser meshes, its values are quite pronounced.

Returning to Fig. 8a, it is possible to see a slight pressure undershoot near the tra

edge. Close examination of this region shows the fine structure of the separated flow.
ability of the fifth- and second-order schemes to resolve this structure is illustrated
Fig. 15, where streamlines near the trailing edge are presented for different meshes.
that the “efficient” contour of the edge is also mesh-dependent.

It should be noted also that the wiggles seen in Fig. 15 are entirely due to the post
cessing of small velocity fields. These velocities were found to be smooth grid function
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FIG. 13. Pressure losses in cross sectigns const for different meshes CUD-II-3.
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As follows from the figures, the CUD-based scheme “feels” this subtle detail, even wt
a very coarse mesh is used. In this case, the UD-2 scheme gives a nonseparated
pattern. When the mesh is refined (mesh<58), a small separation bubble is seen in
the flow field, corresponding to the CUD-II-5 calculations. For this mesh, only the on:
of the recirculation pattern can be noticed when inspecting the UD-2 streamlines. Clc
resemblance of the flow structures is seen only for the finest mesh, the difference being
mainly to the resolution of two separation bubbles in the case of CUD-II-5.

Table 5 provides the computational costs when using an IBM PC-type computer wit
Pentium 150 Mhz processor. They are evaluated on the CPU time basis and the numb
steps needed to reach steady-state solutions for the2BOnesh when starting from a very
coarse initial guess (more precisely, to reduce the initial residuals by a factor9f 10

The quite unexpected result in Table 5 is that the CUD-II-3 calculations are cheaper t
their UD-2 counterparts for a fixed mesh. The CUD-II-5 calculations when compared w
those for UD-2 are more expensive approximately by a factor of 1.5. However, when
comparisons are made on the equal accuracy basis, the advantages of CUD-II-5 are ev
For example, comparing 1277 UD-2 and 53 39 CUD-II-5 calculations (nearly mesh-
converged cases), the CPU time per time step can be estimated approximately as 1
and 0.528 s, respectively. Moreover, the number of time steps in the latter case was fc
to be less than one-third that in the former case. This fact is quite understandable di
the reduced number of grid points generating the CUD algebraic system. Therefore,
computational cost decreases roughly by a factor of 10.

TABLE 5

Scheme CPU/step/node (sec) Number of steps  Total CPU time (s)

ubD-2 153x 10* 4550 418.6
CUD-II-3 1.93x 10 3090 358.4
CUD-II-5 2.20x 107 4910 648.1
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FIG. 15. Streamlines near the trailing edge: comparison of CUD-II-5 and UD-2 results.

It should be emphasized that all the above estimates are obtained without optimi:
the convergence process. The “equal conditions” principle of the scheme competitions
used; that is, only inviscid approximation blocks were changed in the computer code.
course, the total number of time steps in both cases can be reduced by some accelel
procedure with possible changes of their ratio.

The comparisons presented in Figs. 8-15 and Tables 4-5 show that, under condif
adversely affecting the accuracy (second-order discretization of the viscous terms and hi
curved nonorthogonal coordinates) the CUD (especially, the fifth-order CUD) techniq
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can operate with reasonable accuracy while using relatively coarse meshes. When comj
with the second-order scheme, they can provide considerable savings of the operation c
for a given accuracy despite the greater operation counts per time step.

Another observation which follows from close examination of the numerical flow fields
that the solutions are absolutely wiggle-free although no artificial smoothing devices w
used in the present calculations.

7. CONCLUSIONS

In the present study, recent versions of third- and fifth-order approximations are inv
tigated. Properties of these approximations are described, the main of them being |
accuracy, a “built-in” filter of spurious oscillations, and favorable response of steady-st
solutions to the cell Reynolds number variation.

When constructing implicit difference schemes with CUD operators, two important ¢
ements are suggested: (i) the simple form of flux splitting, preserving both the positiv
of the approximations and the conservativity of schemes in the case of vector conserve
laws and (ii) the architecture of the implicit part of the algorithms with first-order upwin
operators. Element (ii) and third-order CUD go well together, resulting in the method whi
provides rapid convergence to steady-state solutions.

The CUD schemes were tested against the inviscid and viscous Burgers equation
the inviscid case, considerable increase of accuracy was demonstrated when calcul
smooth solutions. When supplied by flux limiters, the CUD schemes are shown to have
potential for serving as parts of high-resolution schemes for discontinuous solutions.

In the viscous case, the main emphasis was placed on the study of mesh-convergenc
accuracy of steady-state solutions. With a proper choice of the forcing term and bounc
conditions, the exact solution consists of “inviscid” exponential parts separated by the shc
type structure. Calculations were carried out using third- and fifth-order CUD, combin
with nth-order discretizations of the viscous temms= 2, 4, 6. The conventional second-
order differencing was also tried for comparison purposes.

The main conclusions are as follows:

(i) No limiters were needed in the present study to obtain wiggle-free steady-state st
tions with steep gradients.

(ii) The fifth-order CUD provides the least,-errors for all uniform meshes and the
viscous term discretizations used in the calculations. When the shock is properly resol
that is, when its region contains three or more grid points, then the increase of accul
as compared with that for the second-order scheme is measured by orders of magni
The accuracy is especially high when the viscous term is discretized using high-or
formulae.

(ii) The order of mesh convergence depends on the dominafideffor T E, themth
andnth order local truncation errors of the “inviscid” and “viscous” operators, respectivel
It is close tom or n if TER, >> TE], or TE], << TEJ,. In particular, the CUD-II-5
solutions show the convergence orders near 2, 4, andrb£a, 4, and 6.

(iv) In the underresolved case when only 1-2 grid points can be found in the shc
region, all tested schemes give approximately the same order of actual accuracy. How
the usual procedure of clustering grid points in the steep gradient regions can restore
considerable advantages of CUD-II-5.
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The CUD algorithms for model equations are extended to the case of the Navier—Stc
equations written in the conservative form in curvilinear coordinates. In this case, ra
variations of metric coefficients near the leading and trailing edges, skewed coordir
lines, and the high aspect ratio of the computational cell are expected to adversely a
the solution accuracy. The calculations performed using the combination “CUD & seco
order discretization of viscous terms” and low-order upwind schemes show that despite
above negative factors, the CUD-based schemes provide solutions which are conside
closer to the mesh-converged result than those for the second-order method. Again
scheme with CUD-II-5 was found to be the most accurate. Even when using very coz
30 x 20 mesh, the scheme is capable of “feeling” the fine structure of the separated f
near the trailing edge, while the second-order scheme gives a nonseparated flow patte

As in the case of Burgers equation, the higher accuracy of the fifth-order method
spite the second-order discretization of viscous terms can be explained by the relati
small truncation errors in the inviscid core of the flow which can be expected to
max(TEp,,, Re'ITEZ), in contrast toT EZ, in the case of the second-order scheme. |
seems to be important also that in the present steep-gradients case no smoothing techr
which can result in locally low-order truncation errors were used to obtain nonoscillati
solutions.

Summing up the theoretical issues relevant to the CUD-II-3 and CUD-II-5, some und
standing of their performance follows, not only from the general theory which relates
approximation and mesh-convergence orders, but also from:

(i) the general property of both centered and noncentered high-order compact discre
tions characterized by small numerical constants in their truncation errors;

(i) the specific property of compact upwind discretizations manifested in relatively we
conditioned systems of steady-state difference equations;

(i) the specific feature of the CUD-II-3 and CUD-II-5 schemes allowing efficient pre
conditioning.

Inthe CFD area, their application seems to be especially beneficial when good resolut
(including fine details) of high Reynolds number flows with modest computational expen:
is desirable. However, in the cases of relatively small Reynolds numbers and/or smc
behavior of solutions, centered compact approximations [13] may be recommended dt
their accuracy and simplicity.

Concluding the discussion, we note that CUD-II-3 and CUD-II-5 possess other reme
able properties which are beyond the scope of the present paper. It turns out that their li
combinations can be used when constructing arbitrary-order schemes for parallel ce
lations [18]. Another interesting feature of CUD-II-5 is its ability to provide negligible
phase errors practically for all wave lengths supported by grids when combined with
newly proposed CUD-based fifth-order two-step time integrators [19]. Another line of thi
development which is in progress now is the domain decomposition CUD technique
complicated geometries.
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