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The difference schemes for fluid dynamics type of equations based on third- and
fifth-order Compact Upwind Differencing (CUD) are considered. To validate their
properties following from a linear analysis, calculations were carried out using the
inviscid and viscous Burgers’ equation as well as the compressible Navier–Stokes
equation written in the conservative form for curvilinear coordinates. In the latter case,
transonic cascade flow was chosen as a representative example. The performance of
the CUD methods was estimated by investigating mesh convergence of the solutions
and comparing with the results of second-order schemes. It is demonstrated that
the oscillation-free steep gradients solutions obtained without using smoothing tech-
niques can provide considerable increase of accuracy even when exploiting coarse
meshes. c© 1998 Academic Press

Key Words:compact upwind differencing; high-order schemes; Burgers and
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1. INTRODUCTION

In the seventies, the high-accuracy technique was proposed for fluid dynamics which
was based on the third-order compact upwind differencing (CUD-3) idea [1]. In subsequent
years, it was extensively used for solving various compressible and incompressible viscous
flows described by the Navier–Stokes equations and their simplified forms [2]. As its exten-
sion, the fifth-order CUD (CUD-5) was described [3] and validated as a part of theψ − ω

method for incompressible flows [4].
Application of the CUD approach to viscous flows showed that high-accuracy oscillation-

free solutions can be obtained for many practical cases without using any artificial
smoothing devices (limiters, additional dissipation, etc.) as far as steady state solutions
are concerned.

Investigations into the CUD-3 schemes for unsteady inviscid computations were initiated
in [5]. They have been continued in [6], resulting in high-resolution schemes for the Euler
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equations. Applications of the CUD-3 to unsteady compressible Navier–Stokes equations
were reported also in [7].

In the early nineties, new versions of the third- and fifth-order compact upwind dis-
cretizations were proposed and investigated theoretically [8, 9]. They can be referred to as
CUD-II-3 and CUD-II-5. The general CUD theory and applications up to 1993 can be found
in [10]. Other types of upwind compact formulas with pentadiagonal matrix operators were
considered in [11, 12].

At present, it is clear how to construct formally arbitrary-order compact differencing
(in general, nonsymmetric) formulas which are some rational functions of conventional
difference operators [10]. However, the important point here is to choose those which lead
to stable schemes, at least in the case of constant coefficients and unbounded domains
(or periodic functions). However, even if theoretical studies are carried out and necessary
stability proofs are presented, the question arises to what extent the resulting schemes
are competitive. The question is not trivial, since it follows only from the well-known
theorem “nth-order discretization+ stability = nth-order convergence” that asymptotic
mesh convergence order can be at leastn. In fact, accuracy estimates depend also on
constants characterizing the sensitivity of the numerical solutions of resulting difference
systems to input data perturbations. For example, high-order centered approximations to
the first derivatives can lead to ill-conditioned systems with little hope of obtaining accurate
solutions. Moreover, there are some factors in many real-life problems which have the
potential for neutralizing the possible advantages of high-order schemes. They are, for
example, nonsmooth meshes in curvilinear coordinates, low-order discretizations of viscous
terms, and computational costs when solving resulting algebraic systems.

Although considerable knowledge was obtained while solving various CFD problems
with CUD-3 (and partially with CUD-5), comparatively recent approximations CUD-II-3
and CUD-II-5 were investigated mainly theoretically. Theoretical analysis [8–10] indicated
that they can be especially beneficial when applied to steady-state problems. However,
the quantitative estimates showing their real performance were lacking. The present pa-
per concerns the first numerical investigation of methods which use these approximations.
It is based on large-scale calculations and comparisons of the performance of low-order
schemes with emphasis on steady-state high Reynolds number solutions of the Navier–
Stokes equations. The study is aimed at estimating the accuracy and quality of the result-
ing numerical solutions, as well as the corresponding computational costs. Another goal
is the examination of the CUD behavior in combination with different “non-CUD” ele-
ments (viscous terms discretizations, meshes, iteration or time stepping methods, algebraic
solvers).

In Sections 2 and 3, the theoretical background of CUD-II-3, CUD-II-5, and the resulting
schemes are briefly outlined for completeness (the relevant mathematics can be found in
[8–10]).

Testing calculations using the inviscid and viscous Burgers equation are described in
Section 4. Their aims are estimates of the CUD “peak” performance which illustrate
the main theoretical features of the technique (conservation, accuracy, behavior in the
cases of discontinuous and steep gradient solutions), as well as comparisons with
the second-order upwind scheme obtained by replacing the CUD with three-point one-
sided differences. Although the emphasis is placed here on the mesh-convergence of
steady-state viscous solutions, an example of inviscid shock-capturing calculations is also
presented.
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In Section 5, a family of implicit unfactored CUD-based schemes is outlined for the
compressible Navier–Stokes equations written in curvilinear coordinates. In those schemes,
the CUD approximations are used in the flux-splitting manner while the implicit operator is
based on the first-order upwind differencing. For infinite values of time steps, the schemes
reduce to defect-correction methods which are strictly contractive at least in 1D constant
coefficient case.

Section 6 contains a detailed description of the calculations and the results. As a repre-
sentative example, transonic cascade flow was chosen. Numerical experiments were carried
out with refining meshes until the mesh-converged flow field was obtained. Using this field
as a reference, the mesh-convergence rates, actual accuracy, and computational costs of
the CUD-II-3, CUD-II-5, and the second-order scheme are estimated and compared. The
flow field parameters are presented for different meshes, special attention being paid to the
separate flow resolution near the trailing edge.

Finally, Section 7 summarizes the main findings of the paper and presents the discussion.

2. NONCENTERED THIRD- AND FIFTH-ORDER COMPACT UPWIND DIFFERENCING

Compact upwind differencing is thought of here as an implicit nonsymmetric discrete
form of convective terms of fluid dynamics-type equations which satisfies two conditions:

(i) The implicit part consists of tridiagonal operators (“compactness”).
(ii) The “orientation” of the differencing can be changed in the same way as in the case

of conventional one-sided differences. From the mathematical viewpoint it means that the
differencing operator can change the sign of its self-adjoint part from positive to negative
or vise versa.

We will focus here on the latest versions of the CUD family [8, 9] which are investigated
in the present study. They can be considered as additive corrections to the general first-order
upwind differencing operators, defined on the meshxj = jh, h = const as

1(s) = 0.5(10 − s12), (1)

where

10 f j = f j +1 − f j −1,

12 f j = f j +1 − 2 f j + f j −1,

ands is the “switching” parameter.
The corrected differencing formulas can be obtained in the following way.
Considering the difference between the exact derivativeDx = ∂/∂x and the generic

operator1(s), we may write the formal Taylor expansion series regardingh as a small
parameter:

Dx − h−11(s) = sh

2
D2

x − h2

6
D3

x + sh3

24
D4

x − h4

120
D5

x + O(h5)

=
(

I − 1

3s
hDx + 1

12
h2D2

x − 1

60s
h3D3

x

)
sh

2
D2

x + O(h5). (2)
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Here we suppose thats 6= 0. The next step is to change the power series

1 − 1

3s
z + 1

12
z2 − 1

60s
z3 (3)

by a suitable Pad´e approximant,z = hDx being considered as a variable.
If the third-order accuracy for the LHS of (2) is sufficient, then expression (3) can be

changed by (
1 + 1

3s
z

)−1

which isO(z2) Padé approximant for (3). All we need now is to discretizehDx andh2D2
x at

least with the first- and second-order formulas, respectively. Restricting our consideration
to tridiagonal operators, we take12 and1(s1) as the discretization ofh2D2

x and hDx,
respectively, considerings1 as another parameter. Now we have the third-order operator

L3 =
[
1(s) + s

2

(
I + 1

3s
1(s1)

)−1

12

]/
h. (4)

Including more terms in the Pad´e approximants for the RHS of Eq. (2), the fifth-order
CUD operator which will be used also in the present study can be written as

L5 =
[
1(s) + s

2
R−1Q

(
I + 1

12
12

)−1

12

]/
h, (5)

where

Q = I +
(

− 1

15s
− s1

4

)
10 +

(
1

6
+ s1

15s

)
12

R = I +
(

1

10s
− s1

4

)
10 +

(
1

6
− s1

10s

)
12

signs1 = signs, s2 = 4/5.

Supposing thatu is a sufficiently smooth function and using the Taylor expansion series,
the following expressions can be obtained when estimating the actions of the CUD-II-3 and
CUD-II-5 operators,

L3u j = Dxu

∣∣∣∣
x=xj

+ s

(
1

12

s1

s
+ 1

18s2

)
h3 ∂4u

∂x4

∣∣∣∣
x=x∗

, (6)

L5u j = Dxu

∣∣∣∣
x=xj

− s

(
1

144

s1

s
+ 1

900s2

)
h5 ∂6u

∂x6

∣∣∣∣
x=x∗

, (7)

wherex∗ ∈ [xj − h, xj + h]. One can observe that the numerical coefficients in (6), (7) with
proper choice ofs1 ands can be considerably smaller then those in conventional formulas
of the same orders. It means that approximations (6), (7) toDxu can be quite accurate.
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It can be proved also thatLm, m= 3, 5, is a positive (negative) operator ifs > 0(s < 0)

and sgns1 = sgns[10]. In that case,(Lmu, u)H > 0 for s > 0, (Lmu, u)H < 0 for s < 0,
whereu 6= 0 and(u, v)H is the inner product defined as

(u, v)H =
∑

i

ui vi , u, v ∈ H. (8)

In (8), H is supposed to be the Hilbert space of either periodic or finitely supported scalar
or vector-valued grid functions and the summation is performed over the grid points.

Denoting the skew-symmetric and self-adjoint parts ofLm by L(1)
m andL(0)

m , it is easy to
show that

Lm(s) = L(1)
m + sL(0)

m , (9)

whereL(1) = −(L(1))∗, L(0) = (L(0))∗ > 0, and the asterisk denotes conjugate operators
in the sense of the inner product(., .)H defined by (8).

Note that the generic operator1(s) possesses the same property since1∗
0 = −10 and

1∗
2 = 12 < 0. That is why eachLm operator can be labelled by “upwind” differencing,

meaning that its sign can be chosen according to the local slopes of characteristics of
hyperbolic equations or systems. Looking at (9) from another side, one can say thatLm is
the centered(m + 1)th order differencing defined byL(1)

m plus themth-order dissipation
defined byL (0)

m . It is the main difference betweenLm and the corresponding well-known
centered compact differencing of the(m+1)th order which is dissipation-free (a rich variety
of centered compact operators is presented in [13]).

Consideringsas an upwinding parameter, we will refer to operators (4) and (5) as compact
upwind differencing of the second type, (CUD-II-3) and (CUD-II-5), to discern them from
the previous versions of third- and fifth-order CUD described in [10].

To outline other properties of operatorsL3 andL5, we consider the scalar conservation
law

∂u

∂t
+ ∂ f (u)

∂x
= 0 (10)

and semi-discretized CUD scheme

∂u

∂t
+ Lm f (u) = 0, (11)

where sgns = sgn f ′(u) at each grid point. Assuming frozen coefficients, scheme (11) is
stable in theL2-norm (more precisely, in the discrete analogue ofL2-norm) generated by
(., .)H due to the positivity ofLm. For proper discretizations of∂u/∂t in Eq. (11), scheme
(11) will be either conditionally or unconditionally stable.

In the case of the vector conservation law (10), positive approximations to∂ f/∂x and
stable scheme (11) can be constructed either by diagonalization of the Jacobian matrixf ′(u)

or by flux splitting (see [10] for details). The latter approach is used in the present study.
Supposing thatf (u) = au, a = const> 0, one can estimate dispersion and dissipation

properties of (11). Comparing the exact wave solution of (10)

u(x, t) = e−ik(x−at)



           

210 TOLSTYKH AND LIPAVSKII

with the corresponding exact solution of (11)

u(xj , t) = e−dteik( jh−a∗ t),

wherea∗ is the numerical phase velocity whiled = d(k) characterizes dissipation, one can
obtain the functionsa∗/a andd̄(α) = dh/|a|, α = kh.

Consideringα as the Fourier variable and introducing the Fourier imagesL̂(1)
m andL̂(0)

m

of L(1)
m andL(1)

m (which are imaginary and positive real functions ofα, respectively), one
can see that

a/a∗ = Im(L̂(1)(α))/α, d̄ = |s|L̂(0)(α).

The functionsa/a∗ andd̄ are presented in [10] for various members of CUD family. Here
we note only the following features of CUD-II-3 and CUD-II-5:

(i) In the domain of physically relevant wave numbers supported by meshes (approxi-
mately, for 0≤ α ≤ π/2), one has

a/a∗ ≈ 1, d̄ ≈ 0,

at least for fifth-order schemes which means negligible phase errors and dissipation;
(ii) For the shortest waves admitted by meshes (π/2 ≤ α < π ), the phase errors become

apparent, but at the same time the dissipation increases dramatically. In fact,L(0)
m define

mth-order built-in filter of high frequency noise.

3. DIFFERENCE SCHEMES

Considering again the scalar conservation law, we note that if the upwinding parameter
s does not change its sign then the grid functionLm f can be cast in the flux form

Lm f j = qj +1/2 − qj −1/2, m = 3, 5

with the grid functionqj −1/2 ( j = 0, ±1, ±2, . . .), implicitly depending onf j . To preserve
this property in the case of sonic points, it is possible either to modify the generic operator
1(s) [10], or to use the splitting technique. We will focus here on the latter approach, setting

∂ f

∂x
= L+

m

f (u) + Cu

2
+ L−

m

f (u) − Cu

2
+ O(hm), m = 3, 5, (12)

where the operatorsL+
m andL−

m correspond toLm with s > 0 ands < 0, respectively,C is
some positive constant, and the indexj is omitted.

To guarantee the positivity of this differencing operator,f ′(u) + C and f ′(u) − C do
not need to be necessary positive and negative, respectively. Indeed, it is easy to verify that
approximation (12) to∂ f/∂x is positive (in the “frozen coefficients” sense) for arbitrary
C > 0.

Combining this approximation with any reasonable time-stepping device one can
obtain a rich variety of CUD-II-m schemes for Eq. (10). For example, the simplest explicit



         

COMPACT UPWIND DIFFERENCING 211

scheme reads

uk+1 − uk

τ
+ Lmx f k = 0, (13)

where the mesh{tk = kτ, xj = jh} is supposed;Lmx f stands for the approximation to∂ f/∂x
given by (12). To obtainuk+1, two and four tridiagonal matrices should be inverted when
computing the actions of the operatorsL3x andL5x, respectively. To do so, some numerical
boundary conditions are needed at the boundary points. They can be obtained in several
ways by using, for example, one-sided compact or conventional differencing formulas.
However, care should be taken to preserve the stability of the schemes.

Another example is the Runge–Kutta explicit procedure which was used in the unsteady
calculations for the inviscid Burgers equation described below.

In the present paper we, however, will focus on the implicit scheme

[ I + τ L1 f ′(uk)]
uk+1 − uk

τ
+ Lmx f k = 0. (14)

In Eq. (14),L1 is the first-order operator which can be obtained from Eq. (12) by using
1(|s|) and1(−|s|), instead ofL+

m andL−
m, respectively. The truncation error of scheme (14)

is O(τ + hm) which is suitable for steady-state computations with the possible detection of
unsteady behavior of solutions.

The tridiagonal operatorI +τ L1 f ′(uk) should be inverted to obtainuk+1, once the action
Lmx f k is calculated.

It was proved in [9] that scheme (14) is unconditionally stable in the case of “frozen”
coefficients( f ′(uk) = a = const). Moreover, the operatorG : uk → uk+1 obtained from
(14) whenτ = ∞ is strictly contractive; that is,‖G‖ ≤ K < 1. It was shown [10] that
K (s, s1) = 3/(3 + 2s1/s) in the case of CUD-II-3, which means rapid convergence of the
iterative process (14) withL3. It is the main advantage of theL3 operator overL5 and
other CUD operators. For the best choices of the upwinding parameters, their contractivity
numbersK < 1 are very close to unity [10].

Schemes (13), (14) can be easily extended to the cases of the vector conservation laws
with viscous terms. Supposing thatu and f in Eq. (10) arep-vectors, the positivity of the
discretization of∂ f/∂x will be guaranteed if the constantC is changed by any constant
symmetric matrix with positive eigenvalues. Moreover, the termCu can be changed by
some vector-valued functionB(u) for which the Jacobian matrixB′(u) > 0 has positive
eigenvalues. In particular, the well-known forms of the flux splitting are possible when
doing so. We emphasize, however, that from the stability viewpoint there is no need for the
positivity and the negativity of thef ′(u) + B′(u) andf ′(u) − B′(u) eigenvalues, respectively.

Supposing, further, that viscous terms are included in Eq. (10), one can discretize these
terms in many ways quite independently of∂ f/∂x. For example, the term∂/∂x(µ∂u/∂x)

can be discretized as

∂

∂x
µ

∂u

∂x
≈ −δxµδ∗

xu, (15)

whereδx andδ∗
x are some differencing operators and their adjoint operators, respectively.

Settingδx = A(s)−11(s), δ∗
x = −A(−s)−11(−s), where A(s) is the tridiagonal CUD-3

operator [10], one obtains third-order approximation to (15) based on CUD-3. It was used
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previously as a part of the CUD-3 scheme for compressible Navier–Stokes equations [2]. It
was found, however, that in many cases conventional second-order discretization does not
notably decrease the accuracy of the CUD-3 scheme as far as high Reynolds number flows
are concerned and the proper condensing of grid points in viscous layers is performed.

We note, finally, that to construct the CUD schemes in the case of several spatial coor-
dinates (sayx, y, andz), it is sufficient to use CUD operators corresponding to each space
directions (Lx, L y, andLz, respectively). By doing so, one can guarantee the positivity of
spatial discretizations (in the “frozen coefficients” sense). Multidimensional upwinding is
also possible but this topic is beyond the scope of the present paper.

4. NUMERICAL EXPERIMENTS WITH BURGERS EQUATION

To investigate the property of CUD-II-3 and CUD-II-5 approximations numerically, we
consider first the Burgers equation,

∂u

∂t
+ ∂

∂x

(
u2

2

)
= ν

∂2u

∂x2
+ g(u, x), (16)

whereg(u, x) is a forcing term.
Settingν = 0, one can verify the conservation of the above-described differencing when

computing unsteady discontinuous solutions.

Unsteady inviscid case.Although CUD approximations were designed primarily as
methods for the Navier–Stokes equations, CUD calculations for inviscid cases are useful
illustrations of their properties. The shock-capturing capabilities of some CUD-3 schemes
were studied in [5, 6]. The results for fifth-order CUD are presented in [10]. Avoiding the
reproduction of these data here, we summarize the main conclusions:

(i) In accordance with the Godunov’s theorem, CUD-based schemes are not monotone
in the unsteady inviscid case. However, due to their upwind nature, spurious oscillations
are well-localized near shocks.

(ii) Application of flux limiters removes the wiggles completely, limiters being activated
only near shocks.

The above observation suggests the possibility of using CUD as a part of high resolution
schemes.

In this paper, we present an example allowing us to compare quantitatively the numerical
solutions obtained in [14] and the CUD-II-5 results. The problem is given by Eq. (16) with
ν = 0, g(u, x, t) = 0,

u(x, 0) = 1 + 0.5 sin(πx), x ∈ [−1, 1],

and periodic boundary conditions. For this problem, the tabulated errors for several values
of t and mesh sizes are presented in [14].

Table 1 shows the estimates of accuracy inL1 (obtained by comparing with the exact
solution) extracted from [14] and calculated using CUD-II-5 with the fourth-order Runge–
Kutta method. The values listed in the Table 1 correspond tot = 0.3 when the exact solution
is smooth. They are obtained for the numbers of grid pointsn = 80, 160, 320, 640, and
1280. No limiters were used in the CUD case.
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TABLE 1

n L1 err, [14] L1 order, [14] L1 err, CUD-II-5 L1 order, CUD-II-5

80 7.0102D-07
160 4.6548D-06 3.6185D-08 4.27
320 7.7529D-07 2.59 2.0451D-09 4.14
640 1.2524D-07 2.63 1.2145D-10 4.08

1280 1.8075D-08 2.83 7.6772D-12 3.98

As can be seen from the Table 1, the CUD results are up to two to three orders of
magnitude more accurate than those obtained using the third-order TVB scheme [14] with
the same mesh sizes.

The estimated mesh-convergence orders in our case vary from 3.98 to 4.27, thus, indicat-
ing rather fast convergence. A fifth-order convergence is not seen here due to the dominance
of O(τ 4) errors of the Runge–Kutta method overO(h5) errors of the CUD.

Figure 1 shows the CUD-II-5 and the exact solutions att = 1.1 when the shock is already
formed. In these calculations, flux limiter [15] was used to remove several wiggles near the
shock.

It should be noted that the behavior of solutions near discontinuities depends strongly on
the type and parameters of the limiters used in calculations. No attempt has been made in
the present study to optimize the monotonization process.

Steady-state solutions of modified Burgers equation.In the steady-state case, Godunov’s
theorem is no longer applicable and nonmonotone schemes can provide wiggle-free

FIG. 1. Solution of the inviscid Burgers equation atT = 1.1 CUD-II-5 with the fifth-order Runge–Kutta time
stepping.
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discontinuous solutions. Indeed, examples may be easily produced, showing that standing
shock grid functions without any oscillations can be exact solutions of difference equations.

In the viscous case, the monotonicity properties of the steady-state numerical solutions of
(16) depend on the cell Reynolds number Rec = u∗h/ν, whereu∗ is some reference value
of u. To estimate the influence of Rec, it is worth performing the simplest linear analysis.

Consider the equation

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
(17)

with ∂u/∂t = 0,a = const, andu(0) = 1,u(1) = 0. The exact solutions of algebraic systems
resulting from any discretization are known to have the general formu j = ∑

k ckq j
k , where

qk is thekth root of the characteristic polynomial. Supposing that the spurious components
ckq j

k , k > 2, are removed by a suitable choice of some additional boundary conditions for
u j and taking into account the boundary conditions in (17), one can easily obtain

u j = qN

qN − 1
− 1

qN − 1
q j , j = 1, 2, . . . , N, (18)

whereq = q(Rec) and Rec = ah/ν.
All difference schemes possess the following property: if Rec < Rec∗, where Rec∗ =

O(1) is some critical value then (18) mimics the exact solution of problem (17) given
by

u(x) = exp(a/ν)

exp(a/ν) − 1
− 1

exp(a/ν) − 1
exp(ax/ν).

If Rec → ∞ then the behavior of numerical solutions for different schemes can be com-
pletely different depending on the values ofq(Rec). In the case of centered schemes one
usually has|q| → 1 when Rec → ∞. It means that solution (18) can be completely erro-
neous due to ill-conditioned nature of difference equations. If, however,|q| is sufficiently
large for Rec∗ ≤ Re≤ ∞, one may hope that at least the “inviscid” part of the solution is
reproduced with reasonable accuracy due to rapid decay of possible wiggles. For example,
in the case of CUD-II-3 ands= s1 = 1 one has

q =
4
6 + 5

6Rec + [(
4
3 + 5

6Rec
)2 + 2

3Rec
(
Rec − 8

3

)]1/2

8
3 − Rec

.

If Rec < 8
3 = Rec∗ thenq is positive andu j is oscillation-free. If Rec > 8

3 thenq is neg-
ative,|q| being large tending to 2 when Rec → ∞. Hence, the oscillations generated by the
second term in the RHS of (18) have only marginal nature, decaying with increasingj .

The comparison of the steady-state results obtained when using conventional second-
order and several CUD options are reported in [10, 16] forg(u, x) = 0. They show that
the CUD-based methods can be up to several orders of magnitude more accurate than con-
ventional ones. However, in these calculations, the inviscid and viscous terms are balanced
mainly in the shock transition regions, the “inviscid” portion of the solution being nearly
constant.

To add some complexity to the solution outside the shock, we consider the Burgers
equation with a source term for which the exact solution is available.
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The problem is formulated as

∂u

∂t
+ ∂

∂x

u2

2
= ν

∂2u

∂x2
− ex

[
v

2ν
(v2 − 1)(1 − ex) + v2(1 − ex) + νv − 1

]
v(x) = tanh

(
1 − 2x

4ν

)
(19)

u(0, t) = tanh

(
1

4ν

)
, u(1, t) = −etanh

(
1

4ν

)
.

The exact steady-state solution of (19) is

ue(x) = exv(x).

If the viscosity coefficientν is small, two “inviscid” parts of the solution with the exponential
behavior are separated by the shock transition region centered atx = 0.5, its width being
O(ν). Since the “jump” of the solutionδu and the maximum value of the derivativeu′(x)

are approximately 3 and 1/2ν, respectively, we define the characteristic scale of the shock as
δu/u′(x) ≈ 6ν. Hence, the number of grid pointsNv inside the shock in the case of uniform
grids can be estimated asNv = 6νN = 6ν/h whenN is the total number of grid points. The
parameterNv is, in fact, inversely proportional to the characteristic cell Reynolds number
Rec defined here byu∗h/ν, whereu∗ = 1. The values ofNv are given now byNv = 6/Rec.
Either Nv or Rec are useful parameters when presenting the numerical solutions, since, on
the one hand, they indicate subcritical (Rec < Rec∗) or supercritical (Rec > Rec∗) regimes,
followed from the linear analysis similar to that presented in Section 2 and, on the other
hand, they show directly the mesh sizeh for ν = const.

Calculations were carried out using uniform meshes with double the number of grid
points. The implicit time stepping defined by Eq. (14) was used. The processes were ter-
minated whenL2-norms of the residuals became as small as 10−12. The admissible CFL
numbers were found to be up to 1000, thus indicating that the scheme is practically uncon-
ditionally stable in the present nonlinear case.

Along with the CUD-II-3 and CUD-II-5 approximations to the inviscid term, the second-
order one-sided three-point formulas were tried, thus presenting the conventional upwind
scheme. We denote it by UD-2. Two options were used when discretizing the viscous term,
namely, the conventional second-order approximation of the type (15) and the fourth-order
compact approximation

ν
∂2u

∂x2
= ν

h2

(
I + 12

12

)−1

12u + O(h4). (20)

In the case of UD-2, the above options gave approximately the same results so the “pure”
second-order upwind scheme was adopted as UD-2.

The main output of the calculations presented here are the numerical solution errors as
functions ofNv, where the errorE2 is defined on the basis of the deviations from the exact
solutionue of Eq. (19):

E2 =
[

h
N∑

i =1

(ui − ue(xi ))
2

]1/2

.
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FIG. 2. L2-errors of the steady-state solutions of the modified Burgers equation vs the number of grid in the
shock region: comparisons of CUD-II-5, CUD-II-3, and UD-2 convergence curves.

Figure 2 shows the log–log plot ofE2(Nv) for CUD-II-5, CUD-II-3 with fourth-order
discretization (20), and UD-2. Depending on the values ofNv, the numerical solutions
of Fig. 2 can be classified into those which resolve or underresolve the shock. Taking
into account the above linear analysis, we define the underresolved case by the inequality
Rec ≥ Rec∗ = 2 which givesNv ≤ 3.

As can be seen from the figure, theE2-errors for the CUD-based schemes are not only
decaying more rapidly than those for UD-2 in the well-resolved region(which is quite
expected), but they also show the dramatic increase of accuracy measured by the orders of
magnitude. Comparing the CUD-II-5 and CUD-II-3 solutions, one can see that the third-
order results are less accurate but they are considerably more accurate than those obtained
with UD-2.

Considering now the underresolved case when only one to three points can be found
in the shock transition region, all considered methods give approximately the same values
for the E2-errors. However, the CUD-II-5 error is slightly less than that for other tested
methods. It is not a trivial fact, since large high-order derivatives in truncation errors can
completely neutralize the powers of mesh sizes in the case of coarse meshes.

A close examination of the underresolved case when only one grid point can be found
strictly inside the shock (N = 25, Rec = 4) has shown that all methods give the solutions
which slightly oscillate near the exact solutionue(x). This fact fits neatly into the above
theoretical estimates. However, theE2 errors in this case are not excessively large, thus
indicating relatively small amplitudes of these spurious oscillations.

To restore the noticeable advantage of CUD-based schemes, it is sufficient to condense
grid points in the shock region. Figure 3 shows the comparison of the exact solution (solid
line) and CUD-II-5 (markers) in the case ofN = 10 and clustering which guarantees about
three grid points in the shock.
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FIG. 3. The exact and CUD-II-5 steady-state solutions of the modified Burgers equation.N = 10, with
clustering of grid points in the shock region.

Returning to the well-resolved case, one can see that the slopes of the CUD curves are
not strictly constant, showing a slight variation of the convergence rates. It can be explained
by the “blended” nature of the truncation errors (TE) which have the form

TE(x) = TEm
inv + νTEn

vis, TEm
inv = c1(x)hm, TEn

vis = c2(x)hn,

wherem= 3, 5 andn = 4 while the functionsci (x), i = 1, 2, are defined by the exact so-
lution. In contrast to the inviscid and viscous terms of the equation,TEm

inv andTEn
vis do

not balance each other and their relative roles depend strongly on thec1 and c2 func-
tions. As a result, one may expectmth- or nth-order convergence ifTEinv >> νTEvis or
TEinv << νTEvis, respectively.

To investigate further the role of the viscous term discretization, additional calculations
were carried out using the conventional second-order three-point approximation to∂2u/∂x2

and the sixth-order compact differencing,

2

15
u′′

j −1 + 11

15
u′′

j +
2

15
u′′

j +1 = 1

h2

[
1

20
u j −2 + 4

5
u j −1 − 17

10
u j + 4

5
u j +1 + 1

20
u j +2

]
+ O(h6),

where the primes denote derivatives. The convergence curves of CUD-II-5 with theO(hn)

formulas for the viscous term,n = 2, 4, 6, are shown in Fig. 4 with the UD-2 results from
Fig. 2.

The following conclusions may be drawn from Figs. 2 and 4:

(i) the CUD-based schemes are considerably more accurate than UD-2, even though a
low-order operator is used for the viscous term;
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FIG. 4. Comparisons of mesh convergence for different discretization of the viscous terms CUD-II-5 with
second- (V2), fourth- (V4), and sixth-order (V6) discretization of viscous terms.

(ii) the combinationm= 5,n = 6 provides the most rapid convergence and the least errors
for largeNv. However, the CUD-II-5 curves corresponding ton = 4 andn = 6 have inter-
sections in some domain ofNv due to the combined effect of the “viscous” and “inviscid”
truncation errors.

Again, the explanation follows from the relative roles ofTEm
inv andTEn

vis. Table 2 shows
the numerical values of theirL2 norms calculated using the exact solution forN = 1600.

Due toTE5
inv << νTE4

vis, TE5
inv >> νTE6

vis, andTE3
inv >> νTE4

vis, the convergence near
O(h5), O(h4), or O(h3) can be expected for the different combinations ofm andn.

SinceνTE2
vis dominates overTEm

inv, m= 3, 5, both CUD schemes are expected to be of
second order as in the case of UD-2. However,TE2

inv >> νTE2
vis and large “inviscid” errors

make the actual accuracy of UD-2 considerably poorer (about an order of magnitude) than
the accuracy of its CUD counterparts.

The estimates of theL2 convergence orders calculated for different combinations ofm
andn (denoted bym − n) and largeNv are presented in Table 3.

As can be seen, the actual order of them− n combination lays betweenm andn or
nearn.

TABLE 2

TE5
inv TE3

inv TE2
inv νTE6

vis νTE4
vis TE2

vis

9.05D-08 1.2D-04 1.25D-02 1.46D-09 1.05D-06 1.95D-03
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TABLE 3

m − n 5 − 6 5− 4 5− 2 3− 4 2− 2

L2-order 5.15 3.84 2.47 3.11 1.96

Based on the above observations, one may arrive at the conclusion that the CUD technique
can be advantageous even when combined with simple viscous term discretizations in the
cases of high Reynolds number flows. In these cases, the dominance ofO(hm), m = 3, 5,
truncation errors in inviscid portions of the flow due to the Re−1 factor and the absence of
the dominant errors of the convective term discretizations in viscous regions may increase
solution accuracy. This suggestion will be illustrated in the next section.

We conclude this section with the following remarks:

1. The exact solution Eq. (19) is characterized by a rather strong shock inside the inviscid
flow. To estimate roughly the accuracy in the “smooth” cases, one can considerNv = 6/Rec

as a number of grid points per characteristic length. For example, if there is no shock in the
computational domain 0≤ x ≤ 1 thenNv = N and the efficient Rec = 6/N.

2. The local errors in the shock region influence greatly theE2 error. Clearly, the local
errors in the “inviscid” parts of the solutions are considerably less thanE2 for fixed values
of Rec.

5. APPLICATION TO COMPRESSIBLE NAVIER–STOKES EQUATIONS

We consider the Navier–Stokes equations written in conservative form in general curvi-
linear coordinatesξ, η, ζ as

∂f(u)

∂t
+ ∂E(u)

∂ξ
+ ∂F(u)

∂η
+ ∂G(u)

∂ζ
= V(u), (21)

whereu = (ρ, u, v, w, ε)T with Cartesian components of the velocityu, v, w, densityρ,

and internal energyε. The vectorsE, F, G, andV representing the flux functions and viscous
terms, respectively, can be found in the CFD literature.

Introducing uniform meshξi = i 1ξ, η j = j 1η, and ζk = k1ζ , the CUD-II-m diff-
erencing described in Section 2 can be applied toξ -, η-, andζ -derivatives, resulting in
the grid functionsLmξE, LmηF, andLmζ G. Considering, for example, theξ -direction, one
can write

∂E(u)

∂ξ
≈ L+

mξ

(
E + Cf(u)

2

)
+ L−

mξ

(
E − Cf(u)

2

)
, m = 3, 5, (22)

whereC is some positive symmetric matrix andL±
mξ are theLmξ operators corresponding

to the parameters±|s|. The simplest choice ofC is the diagonal matrix

C = cλξ
maxI , (23)

whereλξ
max= max|3(E′(u))| and3(E′(u)) stand for the eigenvalues ofE′(u). The constant

c in Eq. (23) is of an order of unity and can be specified to a certain extent arbitrarily.
Theoretically, the reasonable choices ofC andc are not expected to influence noticeably
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the numerical solutions in “smooth” regions, since the termCf(u) in Eq. (22) corresponds
to themth order dissipative mechanism acting only on short-wave harmonics. Of course,
other forms ofCf(u) (or B(u)) are possible.

Considering viscous term discretizations, numerical examples presented in the previous
section show the beneficial role of high-order techniques. Having in mind this strategy, we
nevertheless choose as the first attempt more simple conventional second-order differencing
of the type (

∂

∂ξ
µ

∂8

∂ξ

)
i jk

= [µi +1/2(8i +1 − 8i ) − µi −1/2(8i − 8i −1)] jk

µi ±1/2 = (µi ±1 + µi )/2

for any grid functionµ and8. In this way, it is possible to see how CUD operators perform
with low-order approximations of viscous terms in the case of high Reynolds number flows.

Due to the conservative property ofL+
m andL−

m, the difference analogues of the spatial
derivatives in (21) can be considered as the balance of fluxes across the faces of the com-
putational cells centered at each (i, j, k) grid point. However, no special measures were
undertaken to preserve the geometrical conservation laws. It was expected that violation
of these laws in the case of high-order schemes would lead only to high-order influence
on numerical results, at least in the case of smooth solutions. To verify this assumption,
CUD-II-3 was applied to the chain rule conservation laws. It was found that no considerable
difference between numerical solutions can be observed in the cases of transonic cascade
flows when using highly skewed curvilinear coordinates.

In all cases, denoting the CUD discretization of the spatial derivatives in Eq. (21) byNu,
the semi-discretized form of Eq. (21) can be cast in the form

∂u
∂t

+ M−1Nu = 0, (24)

whereM is the Jacobian matrixf ′(u). Starting from Eq. (24), the final scheme can be written
as

(I + τσ N1)
uk+1 − uk

τ
+ M−1Nuk = 0, (25)

wherek denotes time leveltk = kτ with time stepτ (in general,k andτ can be considered
as iteration numbers and iteration parameters, respectively) while valuesσ = 0 andσ = 1
correspond to explicit and implicit schemes. In Eq. (25),N1 is the first-order discretization
of spatial derivatives of the linearized Navier–Stokes equations obtained when using the
upwind operators1(s) defined in Section 2 and corresponding toξ, η, andζ coordinates.
The stencil in the implicit operatorI + τσ N1 contains only three grid points in each spatial
direction, thus admitting relatively simple iterative inversions.

We note that by settingτ = ∞, σ = 1, scheme (25) can be transformed easily into a
defect correction procedure with solving two or four nonlinear problems based on first-
order operators to guarantee third- or fifth-order accurate results.

To invert the implicit operator in Eq. (25), any iterative solver for large sparse matrices
can be used. The numerical experiments were carried out using GMRES method [17]
with ILU preconditioner and Gauss–Zeidel technique. Of course, only a limited number
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of iterations were performed during each time step (or external iteration), the iteration
parameterτ being dependent on the grid points.

When constructing scheme (25), other operators (in particular, other members of the CUD
family) can be used to descretize the spatial derivatives in Eq. (21). It makes comparisons
of schemes based on different approximations being particularly simple.

6. NUMERICAL EXAMPLE: 2D FLOWS

To illustrate the performance of scheme (25) with the CUD approximations in the case
of nonorthogonal curvilinear coordinates, the transonic cascade flow described by the
Navier–Stokes equations was chosen as a target problem. This problem is interesting due
to various types of boundary conditions, high curvature leading and trailing edges, and
nonuniform skewed meshes. In the present study, the 2D case is considered only. It allows
us to carry out large-scale calculations aimed at investigating the computational efficiency of
the schemes and its dependence on various scheme parameters and details (grids, boundary
conditions, etc.)

The computational domain typical of turbomachinery problems with periodic, solid wall,
inflow, and outflow boundaries was considered. At the inflow, the total pressure, the to-
tal temperature, and the inflow angle were specified while the static pressure and the
extrapolation conditions were used at the outflow. At the solid walls the no-slip condition
and prescribed temperature were assumed.

The geometry of the blade and the H-type grid obtained by a parabolic grid generator is
displayed in Fig. 5. To investigate the convergence of the steady-state solutions with refining
meshes, 30× 20, 59× 39, and 117× 77 grids were used. The time stepping procedure (more
precisely, the external iterative procedure) was performed with the parameterτ in Eq. (25)
considered as a variable grid function. The calculations were carried out for the transonic
regime with the outlet static pressure to inlet total pressure ratio equal to 0.5. The Reynolds
number Re varied from 104 to 1.6× 106.

FIG. 5. H-type mesh used in cascade flow calculation.
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Several boundary conditions for the wall pressure were tested, including the zero pres-
sure gradient condition and the continuity equation at the wall. It was found that they
provide practically the same flow fields everywhere but in the vicinity of the leading and
trailing edges, where several percentage differences in the wall pressure distributions were
observed. As a final option, the zero pressure gradient condition was adopted.

When advancing to the steady-state solutions, no attempts were made to optimize the
time stepping processes. However, several options were tried, including the simplest explicit
scheme (σ = 0) and implicit scheme (σ = 1) with the GMRES or Gauss–Zeidel iterations. It
was found that, despite the fact that the GMRES option converges more rapidly, the Gauss–
Zeidel technique is slightly preferable in the present particular exercises due to reduced
operation counts per iteration.

As examples, several convergence histories are shown in Fig. 6, whereL2-norms of the
residuals are presented as functions of the time step (the external iterations) number. It was
found that very small residuals (up to 10−12) can be obtained with great ease when using
CUD-II-3. In accordance with the theoretical estimates [10], the slower convergence of the
CUD-II-5 solutions may be seen from Fig. 6. For comparison, the curve for the explicit CUD-
II-3 scheme (25) is also depicted in Fig. 6. It should be noted that, due to reasonable operation
counts, all calculations of the present study were carried out on personal computers only.

Having in mind the advantages of the CUD-II-3 scheme when performing time-stepping
and higher accuracy of CUD-II-5 steady-state solutions, the following approach may be
suggested.

At the initial stage of computations, the CUD-II-3 block should be used to provide rapid
convergence. This block should be replaced (by switching or gradually) with the CUD-II-5

FIG. 6. Convergence to the steady-state solution:L2 norms of the residuals vs the number of iterations.



        

COMPACT UPWIND DIFFERENCING 223

one at the final stages of calculations, thus increasing the accuracy of steady-state solutions.
Of course, many other elements may be added on the way to optimal algorithms, one of
them being the multigrid strategy.

The main emphasis in the present study was placed on the convergence of stationary
solutions obtained when applying the CUD technique to the hyperbolic part of the Navier–
Stokes equations and preserving the conventional second-order discretization of the viscous
terms. For comparison, the first- and second-order upwind differencing were also used in
the framework of scheme (25). In both cases,Lm operators were changed, either by1(s) or
by three-point one-sided formulas, to produce upwind schemes which we denote by UD-1
and UD-2, respectively.

The calculations were carried out starting with very coarse mesh 30× 20 and then in-
creasing the number of grid points by properly placing a new grid point between two old
neighbor grid points. It was found that mesh 117× 77 is sufficient to consider the CUD-II-5
solution as mesh-independent.

The general view of the flow field pattern is shown in Fig. 7, where the Mach number
contours are presented.

The surface pressure distributions corresponding to the resolution 117× 77 are shown
in Fig. 8a for CUD-II-5, CUD-II-3, UD-2, and UD-1. As can be seen from the figure, the
second-order results are sufficiently close to the mesh-converged curve while the first-order
method performs badly.

The same distributions are shown in Figs. 8b and 8c for coarser meshes, 59× 39 and
30× 20. Note that the latter is too coarse to be used in standard cascade flow calculations.
One may see that the CUD-II-5 curves for the 59× 39 mesh only slightly deviated from the
mesh-converged one. Surprisingly, the corresponding deviations in the case of the 30× 20
mesh are also small enough to be well inside the typical scatter of experimental points for
the cascade flows. This fact suggests very cheap Navier–Stokes calculations for engineering
estimates.

FIG. 7. Mach number contours.
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FIG. 8. Normalized surface pressure distributions. Meshes 117× 77, 59× 39, 30× 20.

Considering UD-2 pressures, the differences between mesh-converged and coarser mesh
data are quite pronounced (especially in the case of the resolution 30× 20). The CUD-II-3
results are intermediate between those for CUD-II-5 and UD-2. However, mesh 59× 39
seems to be quite acceptable for CUD-II-3 calculations.

The convergence of flow variables in the physical plane is illustrated in Figs. 9–11.
As a representative characteristic, the Mach number distributions along they-coordinates
for x = 0.3 andx = 0.9 (the x-axis is collinear with the inflow direction, the origin be-
ing placed at the leading edge) are presented for CUD-II-3 and CUD-II-5 calculations.
The markers show the grid points of the 30× 20 mesh. Again, CUD-II-5 results exhibit
good convergence, thus indicating that the coarsest mesh can be considered as accept-
able for engineering estimates. Another observation is that no more than three to four grid
points are needed in this case for accurate prediction of the tangential velocity near the
surface.

As might be expected, the CUD-II-3 curves demonstrate slower convergence. Neverthe-
less, the 59× 39 mesh seems to be quite reasonable for the scheme. For comparison, the
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FIG. 9. Mach number distributions alongx = const for different meshes CUD-II-5.

UD-2 curve for a 30× 20 mesh is also depicted in Fig. 11. It shows that the second-order
scheme performs noticeably poorer than its CUD counterparts.

To estimate quantitatively the real orders of mesh convergence under the conditions of
curvilinear coordinates and second-order discretizations of viscous terms, the deviations
from the “exact” numerical solutions given by mesh-converged CUD-II-5 results were
considered. They were defined as

errj =
[ ∑

i

(
ρ

( j )
i − ρ

(3)
i

)2 + (
u( j )

i − u(3)
i

)2 + (
v
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[ ∑
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u(3)
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v
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e(3)

i

)2
]1/2 ,

where the values ofj = 1, 2, 3 correspond to meshes 30× 20, 59× 39, 117× 77, and

FIG. 10. Mach number distributions alongx = const for different meshes CUD-II-3.
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FIG. 11. Mach number distributions alongx = const for different meshes UD-2.

summation is performed over the grid points common to all meshes (that is, over 30× 20
mesh grid points). Based on these deviations, the convergence orders were calculated as

orderj = log2
errj

errj −1
.

The deviations and the orders estimated in such a way are shown in Table 4.

As can be seen, the real convergence order for all considered schemes is approximately
one-half that for their inviscid term discretizations. One can observe also that the CUD-II-5
error for the 59× 39 grid is about one-half the UD-2 error for the 117× 77 mesh.

To estimate the dissipation introduced by the schemes in the inviscid portion of the flow,
it is convenient to calculate the pressure losses defined as

1 − p′
0/p0,

where p0 is the total pressure at the inflow andp′
0 is the total pressure computed on the

basis of local flow variables using the adiabatic formula.
The pressure losses in the same cross sections,x = 0.3 andx = 0.9, are presented in

Figs. 12 and 13 for CUD-II-5 and CUD-II-3, respectively. As can be seen, they are negligible
outside the boundary layers, when 59× 39 and 117× 77 meshes are used for the CUD-II-5

TABLE 4

UD-2 CUD-II-3 CUD-II-5

Mesh Err Order Err Order Err Order

30× 20 0.0762 0.0714 0.0316
59× 39 0.0372 1.03 0.0257 1.47 0.00849 2.31

117× 77 0.0159 1.23 0.00789 1.70 0
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FIG. 12. Pressure losses in cross sectionsx = const for different meshes CUD-II-5.

calculations. The values 0.01–0.02 seen in Fig. 12 for the 30×20 mesh correspond to slight
Mach number deviations from the mesh-independent values (see Fig. 9).

The pressure losses calculated for UD-2 solutions (Fig. 14) show that the spurious dis-
sipation introduced by the scheme is not negligible, even if the finest mesh is used. For
coarser meshes, its values are quite pronounced.

Returning to Fig. 8a, it is possible to see a slight pressure undershoot near the trailing
edge. Close examination of this region shows the fine structure of the separated flow. The
ability of the fifth- and second-order schemes to resolve this structure is illustrated in
Fig. 15, where streamlines near the trailing edge are presented for different meshes. Note
that the “efficient” contour of the edge is also mesh-dependent.

It should be noted also that the wiggles seen in Fig. 15 are entirely due to the postpro-
cessing of small velocity fields. These velocities were found to be smooth grid functions.

FIG. 13. Pressure losses in cross sectionsx = const for different meshes CUD-II-3.
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FIG. 14. Pressure losses in cross sectionsx = const for different meshes UD-2.

As follows from the figures, the CUD-based scheme “feels” this subtle detail, even when
a very coarse mesh is used. In this case, the UD-2 scheme gives a nonseparated flow
pattern. When the mesh is refined (mesh 59× 39), a small separation bubble is seen in
the flow field, corresponding to the CUD-II-5 calculations. For this mesh, only the onset
of the recirculation pattern can be noticed when inspecting the UD-2 streamlines. Closer
resemblance of the flow structures is seen only for the finest mesh, the difference being due
mainly to the resolution of two separation bubbles in the case of CUD-II-5.

Table 5 provides the computational costs when using an IBM PC-type computer with a
Pentium 150 Mhz processor. They are evaluated on the CPU time basis and the number of
steps needed to reach steady-state solutions for the 30×20 mesh when starting from a very
coarse initial guess (more precisely, to reduce the initial residuals by a factor of 10−5).

The quite unexpected result in Table 5 is that the CUD-II-3 calculations are cheaper than
their UD-2 counterparts for a fixed mesh. The CUD-II-5 calculations when compared with
those for UD-2 are more expensive approximately by a factor of 1.5. However, when the
comparisons are made on the equal accuracy basis, the advantages of CUD-II-5 are evident.
For example, comparing 117× 77 UD-2 and 59× 39 CUD-II-5 calculations (nearly mesh-
converged cases), the CPU time per time step can be estimated approximately as 1.47 s
and 0.528 s, respectively. Moreover, the number of time steps in the latter case was found
to be less than one-third that in the former case. This fact is quite understandable due to
the reduced number of grid points generating the CUD algebraic system. Therefore, the
computational cost decreases roughly by a factor of 10.

TABLE 5

Scheme CPU/step/node (sec) Number of steps Total CPU time (s)

UD-2 1.53× 10−4 4550 418.6
CUD-II-3 1.93× 10−4 3090 358.4
CUD-II-5 2.20× 10−4 4910 648.1
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FIG. 15. Streamlines near the trailing edge: comparison of CUD-II-5 and UD-2 results.

It should be emphasized that all the above estimates are obtained without optimizing
the convergence process. The “equal conditions” principle of the scheme competitions was
used; that is, only inviscid approximation blocks were changed in the computer code. Of
course, the total number of time steps in both cases can be reduced by some acceleration
procedure with possible changes of their ratio.

The comparisons presented in Figs. 8–15 and Tables 4–5 show that, under conditions
adversely affecting the accuracy (second-order discretization of the viscous terms and highly
curved nonorthogonal coordinates) the CUD (especially, the fifth-order CUD) techniques
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can operate with reasonable accuracy while using relatively coarse meshes. When compared
with the second-order scheme, they can provide considerable savings of the operation counts
for a given accuracy despite the greater operation counts per time step.

Another observation which follows from close examination of the numerical flow fields is
that the solutions are absolutely wiggle-free although no artificial smoothing devices were
used in the present calculations.

7. CONCLUSIONS

In the present study, recent versions of third- and fifth-order approximations are inves-
tigated. Properties of these approximations are described, the main of them being high
accuracy, a “built-in” filter of spurious oscillations, and favorable response of steady-state
solutions to the cell Reynolds number variation.

When constructing implicit difference schemes with CUD operators, two important el-
ements are suggested: (i) the simple form of flux splitting, preserving both the positivity
of the approximations and the conservativity of schemes in the case of vector conservation
laws and (ii) the architecture of the implicit part of the algorithms with first-order upwind
operators. Element (ii) and third-order CUD go well together, resulting in the method which
provides rapid convergence to steady-state solutions.

The CUD schemes were tested against the inviscid and viscous Burgers equations. In
the inviscid case, considerable increase of accuracy was demonstrated when calculating
smooth solutions. When supplied by flux limiters, the CUD schemes are shown to have the
potential for serving as parts of high-resolution schemes for discontinuous solutions.

In the viscous case, the main emphasis was placed on the study of mesh-convergence and
accuracy of steady-state solutions. With a proper choice of the forcing term and boundary
conditions, the exact solution consists of “inviscid” exponential parts separated by the shock-
type structure. Calculations were carried out using third- and fifth-order CUD, combined
with nth-order discretizations of the viscous term,n = 2, 4, 6. The conventional second-
order differencing was also tried for comparison purposes.

The main conclusions are as follows:

(i) No limiters were needed in the present study to obtain wiggle-free steady-state solu-
tions with steep gradients.

(ii) The fifth-order CUD provides the leastL2-errors for all uniform meshes and the
viscous term discretizations used in the calculations. When the shock is properly resolved,
that is, when its region contains three or more grid points, then the increase of accuracy
as compared with that for the second-order scheme is measured by orders of magnitude.
The accuracy is especially high when the viscous term is discretized using high-order
formulae.

(iii) The order of mesh convergence depends on the dominance ofTEm
inv orTEn

vis, themth
andnth order local truncation errors of the “inviscid” and “viscous” operators, respectively.
It is close tom or n if TEm

inv >> TEn
vis or TEm

inv << TEn
vis. In particular, the CUD-II-5

solutions show the convergence orders near 2, 4, and 5 forn = 2, 4, and 6.
(iv) In the underresolved case when only 1–2 grid points can be found in the shock

region, all tested schemes give approximately the same order of actual accuracy. However,
the usual procedure of clustering grid points in the steep gradient regions can restore the
considerable advantages of CUD-II-5.
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The CUD algorithms for model equations are extended to the case of the Navier–Stokes
equations written in the conservative form in curvilinear coordinates. In this case, rapid
variations of metric coefficients near the leading and trailing edges, skewed coordinate
lines, and the high aspect ratio of the computational cell are expected to adversely affect
the solution accuracy. The calculations performed using the combination “CUD & second-
order discretization of viscous terms” and low-order upwind schemes show that despite the
above negative factors, the CUD-based schemes provide solutions which are considerably
closer to the mesh-converged result than those for the second-order method. Again, the
scheme with CUD-II-5 was found to be the most accurate. Even when using very coarse
30× 20 mesh, the scheme is capable of “feeling” the fine structure of the separated flow
near the trailing edge, while the second-order scheme gives a nonseparated flow pattern.

As in the case of Burgers equation, the higher accuracy of the fifth-order method de-
spite the second-order discretization of viscous terms can be explained by the relatively
small truncation errors in the inviscid core of the flow which can be expected to be
max(TE5

inv, Re−1TE2
vis), in contrast toTE2

inv in the case of the second-order scheme. It
seems to be important also that in the present steep-gradients case no smoothing techniques
which can result in locally low-order truncation errors were used to obtain nonoscillating
solutions.

Summing up the theoretical issues relevant to the CUD-II-3 and CUD-II-5, some under-
standing of their performance follows, not only from the general theory which relates to
approximation and mesh-convergence orders, but also from:

(i) the general property of both centered and noncentered high-order compact discretiza-
tions characterized by small numerical constants in their truncation errors;

(ii) the specific property of compact upwind discretizations manifested in relatively well-
conditioned systems of steady-state difference equations;

(iii) the specific feature of the CUD-II-3 and CUD-II-5 schemes allowing efficient pre-
conditioning.

In the CFD area, their application seems to be especially beneficial when good resolutions
(including fine details) of high Reynolds number flows with modest computational expenses
is desirable. However, in the cases of relatively small Reynolds numbers and/or smooth
behavior of solutions, centered compact approximations [13] may be recommended due to
their accuracy and simplicity.

Concluding the discussion, we note that CUD-II-3 and CUD-II-5 possess other remark-
able properties which are beyond the scope of the present paper. It turns out that their linear
combinations can be used when constructing arbitrary-order schemes for parallel calcu-
lations [18]. Another interesting feature of CUD-II-5 is its ability to provide negligible
phase errors practically for all wave lengths supported by grids when combined with the
newly proposed CUD-based fifth-order two-step time integrators [19]. Another line of their
development which is in progress now is the domain decomposition CUD technique for
complicated geometries.
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